Skip to main content

Quantitative EEG Analysis: Introduction and Basic Principles

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 478 Accesses

Abstract

The use of mathematical models for electroencephalography (EEG) analysis has been going on for many years, and currently they are starting to find a place both in clinical practice and in parallel with other methods for evaluation of brain activity. The use and interpretation of these methods are not possible without knowledge of the basic mechanisms and processes that underlie the results obtained from their application. The advantages of the quantitative methods, the processes underlying their presentation, and the optimal parameters used, such as the number of electrodes and time intervals, have been evaluated. Attention has been paid to the advantages of the individual possibilities for EEG signal analysis—absolute and relative power as well as coherence. An analysis of these defined quantities provides an opportunity to enter into the intimate mechanisms underlying specific psychopathological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steffensen JF (2006) Interpolation, 2nd edn, Mineola, N.Y. 978-0-486-15483-1, OCLC, 86777089

  2. Casaglia DC, Pantaleo GG (1993) Brain mapping: a contribution to linear interpolation. Brain Topogr 5:283–288. https://doi.org/10.1007/BF01128995

    Article  CAS  PubMed  Google Scholar 

  3. Dong L, Zhao L, Zhang Y, Yu X, Li F, Li J, Lai Y, Liu T, Yao D (2021) Reference electrode standardization interpolation technique (RESIT): a novel interpolation method for scalp EEG. Brain Topogr 34(4):403–414. https://doi.org/10.1007/s10548-021-00844-2. Epub 2021 May 5. PMID: 33950323; PMCID: PMC8195908

    Article  PubMed  PubMed Central  Google Scholar 

  4. Montoya-Martínez J, Vanthornhout J, Bertrand A, Francart T (2021) Effect of number and placement of EEG electrodes on measurement of neural tracking of speech. PLoS One 16(2):e0246769. https://doi.org/10.1371/journal.pone.0246769. PMID: 33571299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crone NE, Korzeniewska A, Franaszczuk PJ (2011) Cortical gamma responses: searching high and low. Int J Psychophysiol 79(1):9–15. https://doi.org/10.1016/j.ijpsycho.2010.10.013

    Article  PubMed  Google Scholar 

  6. Kubicki S, Herrmann WM, Fichte K, Freund G (1979) Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 12(2):237–245

    Article  CAS  PubMed  Google Scholar 

  7. Galderisi S, Mucci A, Mignone ML, Maj M, Kemali D (1991) CEEG mapping in drug-free schizophrenics. Differences from healthy subjects and changes induced by haloperidol treatment. Schizophr Res 6(1):15–23

    Article  CAS  PubMed  Google Scholar 

  8. Gudmundsson S et al (2007) Reliability of quantitative EEG features. Clin Neurophysiol 118:2162–2171

    Article  PubMed  Google Scholar 

  9. Möcks J, Gasser T (1984) How to select epochs of the EEG at rest for quantitative analysis. Electroencephalogr Clin Neurophysiol 58(1):89–92. https://doi.org/10.1016/0013-4694(84)90205-0. PMID: 6203708

    Article  PubMed  Google Scholar 

  10. Yan MM, Xu XH, Huang ZL et al (2011) Selection of optimal epoch duration in assessment of rodent sleep-wake profiles. Sleep Biol Rhythms 2011(9):46–55. https://doi.org/10.1111/j.1479-8425.2010.00484.x

    Article  Google Scholar 

  11. Dan P, Mircea O, Mihaela M (2021) EEG relative power versus absolute power mapping-advantages, disadvantages. 2000. 21–33

    Google Scholar 

  12. Govindan RB, Massaro A, Vezina G, Tsuchida T, Cristante C, du Plessis A (2017) Does relative or absolute EEG power have prognostic value in HIE setting? Clin Neurophysiol. 128(1):14–15. https://doi.org/10.1016/j.clinph.2016.10.094. Epub 2016 Nov 5. PMID: 27866114; PMCID: PMC7319225

  13. Bowyer SM (2016) Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol 2:1. https://doi.org/10.1186/s40810-015-0015-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Panov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Panov, G. (2023). Quantitative EEG Analysis: Introduction and Basic Principles. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics