Skip to main content
Log in

Coupling of phytoplankton and ciliate biomasses to environmental factors along the north coast of Sfax (Tunisia, Eastern Mediterranean Sea)

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The phytoplankton and ciliate biomasses coupled with environmental factors were investigated in 15 transects in north coasts of Sfax (Tunisia, Eastern Mediterranean Sea) in July 2007. The phytoplankton biomass was dominated by Bacillariophyceae (89.66%), followed by Dinophyceae (10.07%), Coccolithophorideae (0.96%), Cyanobacteriae (0.21%), Chlorophyceae (0.03%) and Euglenophyceae (0.01%). Coscinodiscus sp. (93.26%) was the most abundant species of Bacillariophyceae group and associated with a high nutrient availability. Ciliate biomass was highly variable, with a large dominance of Spirotrichea, up to 96.2%. Biomass followed distinct patterns because of differences in the observed organism biovolumes. The spatial distribution of the ciliates biomass seems to be dependent on environmental factors and probably on their capacity to exploit a wide range of food resources including phytoplankton. The pollution generated by the phosphate-treating manufactory influenced the spatial phytoplankton and ciliate community’s distribution and their diversity along the north coast of Sfax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aktan, Y., Tüfekçi, V., Tüfekçi, H., and Aykulu, G., Distribution patterns, biomass estimates and diversity of phytoplankton in Izmit Bay (Turkey), Estuarine, Coastal Shelf Sci., 2005, no. 64, pp. 372–384.

    Article  Google Scholar 

  2. Alder, V.A., Tintinnoinea, in South Atlantic Zooplankton, Boltovsky, D., Ed., Leiden, The Netherlands: Backhuys Publishers, 1999, pp. 321–384.

    Google Scholar 

  3. Aleya, L., The seasonal succession of phytoplankton in a eutrophic lake through the coupling of biochemical composition of particulates, metabolic parameters and environmental conditions, Arch. Hydrobiol., 1992, no. 124, pp. 69–88.

    Google Scholar 

  4. Balech, E., Tintinnoinea del Mediterraneo, Trabajos del Instituto Espanol de Oceanografia, 1959, no. 28, pp. 1–88.

    Google Scholar 

  5. Balech, E., Los dinoflagelados del Atlantico sudoccidental, Madrid: Instituto Espanol de Oceanografia (Publicaciones especiales), 1988, p.309.

    Google Scholar 

  6. Brahim, M., Hamza, A., Hannachi, I., Rebai, A., Jarboui, O., Bouain, A., and Aleya, L., Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia, Mar. Environ. Res., 2010, no. 70, pp. 411–421.

    Article  Google Scholar 

  7. Burkill, P.H., Mantoura, R.F.C., Llewellyn, C.A., and Owens, N.J.P., Microzooplankton grazing and selectivity of phytoplankton in coastal waters, Mar. Biol., 1987, no. 93, pp. 581–590.

    Article  Google Scholar 

  8. Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., and Issaoui, H., Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes, Estuar. Coast Shelf Sci., 2008, no. 77, pp. 645–656.

    Article  Google Scholar 

  9. Campbell, A.S., The open sea Tintinnoina of the plankton gathered during the last cruise of the Carnegie, Scientific Results of Cruise VII of the Carnegie during 1928–1929 under Command of Captain J.P. Ault, Richmond, VA: Byrd Press and Carnegie Institution of Washington, Publications 537, 1942, pp. 1–163.

    Google Scholar 

  10. D.G.P.A., Direction Générale de la pêche et de l‘aquaculture, Ministère de l’agriculture, Tunisie, annuaire statistique, 2005–2009.

  11. Dolédec, S., and Chessel, D., Rythmes saisonniers et composantes stationnelles en milieu aquatique, II. Prise en compte et élimination d’effets dans un tableau faunistique, Oecol. Oec. Gen., 1989, no. 10, pp. 207–332.

    Google Scholar 

  12. Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouain, A., and Aleya, L., Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea), Sci. Mar., 2008, no. 72, pp. 59–71.

    Article  Google Scholar 

  13. Dodge, J.D., Atlas of Dinoflagellates. A Scanning Electron Microscope Survey, London: Ferrand Press, 1985, p.119.

    Google Scholar 

  14. Epstein, S., and Shiaris, M., Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates and ciliates, Microb. Ecol., 1992, no. 23, pp. 211–225.

    Article  Google Scholar 

  15. Fenchel, T., Relation between particle size selection and clearance in suspension-feeding ciliates, Limnol. Oceanogr., 1980, no. 4, pp. 733–738.

    Article  Google Scholar 

  16. Fogg, G.E., The phytoplanktonic ways of life, New Phytol., 1991, no. 118, pp. 191–232.

    Article  Google Scholar 

  17. Fileman, E., Smith, T., and Harris, R., Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. On phytoplankton and protozooplankton during the spring bloom in the Celtic Sea, J. Exp. Mar. Biol. Ecol., 2007, no. 348, pp. 70–84.

    Article  Google Scholar 

  18. Frontier, S., Etude statistique de la dispersion du zooplankton, J. Exp. Mar. Biol. Ecol., 1973, no. 12, pp. 229–262.

    Article  Google Scholar 

  19. Gallegos, C.L., and Jordan, T.E., Seasonal progression of factors limiting phytoplankton pigment biomass in the Rhode River estuary, Maryland (USA), I. Controls on phytoplankton growth, Mar. Ecol. Prog. Ser., 1997, no. 161, pp. 185–198.

    Article  Google Scholar 

  20. Gifford, D.J., Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia, Mar. Ecol. Prog. Ser., 1988, no. 47, pp. 249–258.

    Article  Google Scholar 

  21. Hamza-Chaffai, A., Amiard-Triquet, C., and El Abed, A., Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast, Arch. Environ. Contam. Toxicol., 1997, no. 33, pp. 53–62.

    Article  Google Scholar 

  22. Huber-Pestalozzi, G., Das phytoplankton des Susswassars, Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae, Stuttgart: E. Schweizerbart Verlag, 1968, p.322.

    Google Scholar 

  23. Johansson, M., Gorokhirra, E., and Larsson, U.L.F., Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper, J. Plankton Res., 2004, no. 26, pp. 67–80.

    Article  Google Scholar 

  24. Kchaou, N., Elloumi, J., Drira, Z., Hamza, A., Ayadi, H., Bouain, A., and Aleya, L., Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia, Estuar. Coast. Shelf Sci., 2009, no. 83, pp. 414–424.

    Article  Google Scholar 

  25. Kivi, K. and Setala, O., Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina), Mar. Ecol. Prog. Ser., 1995, no. 119, pp. 125–137.

    Article  Google Scholar 

  26. Kofoid, C.A. and Campbell, A.S., A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904–1905, Univ. California Publ. Zool., 1929, no. 34, pp. 1–403.

    Google Scholar 

  27. Kofoid, C.A. and Campbell, A.S., The Tintinnoinea of the eastern tropical Pacific, Bull. Museum of Comparative Zool. Harvard College, 1939, no. 84, pp. 1–473.

    Google Scholar 

  28. Latasa, M., Landry, M.R., Schluter, L., and Bidigare, R.R., Pigment-specific growth and grazing rates of phytoplankton in the central equatorial Pacific, Limnol. Oceanogr., 1997, no. 42, pp. 289–298.

    Article  Google Scholar 

  29. Landry, M.R., Brown, S.L., Campbell, L., Constantinou, J., and Liu, H., Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing, Deep Sea Res. II, 1998, no. 45, pp. 2353–2368.

    Article  Google Scholar 

  30. Lohrenz, S.E., Carroll, C.L., Weidermann, A.D., and Tuel, M., Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf, Cont. Shelf Res., 2003, no. 23, pp. 1447–1464.

    Article  Google Scholar 

  31. Lohman, H., Untersuchungen zur Feststellung des Vollständigen Gehaltes des Meeres an Plankton, Wiss Meeresunters., 1908, no. 10, pp. 131–170.

    Google Scholar 

  32. Louati, A., Elleuch, B., Kallel, A., Saliot, A., Dagaut, J., and Oudot, J., Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea, Mar. Pollut. Bull., 2001, no. 42, pp. 445–452.

    Article  Google Scholar 

  33. Lynn, D.H. and Small, E.B., A revised classification of the phylum Ciliophora Doflein, 1901, Revista de la Sociedad de la Historia Natural de Mexico, 1997, no. 47, pp. 65–78.

    Google Scholar 

  34. Menden-Deuer, S. and Lessard, E.J., Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 2000, no. 45, pp. 569–579.

    Article  Google Scholar 

  35. McManus, G.B. and Ederington-Cantrell, M.C., Phytoplankton pigments and growth rates and microzooplankton grazing in a large temperate estuary, Mar. Ecol. Prog. Ser., 1992, no. 87, pp. 77–85.

    Article  Google Scholar 

  36. Nuccio, C., Melillo, C., Massi, L., and Innamorati, M., Phytoplankton abundance, community structure and diversity in eutrophycated Otbetello lagoon (Tuscany) from 1995 to 2001, Ocean. Acta, 2003, no. 26, pp. 15–25.

    Article  Google Scholar 

  37. Petz, W., Ciliophora, in South Atlantic Zooplankton, Boltovsky, D., Ed., Leiden, The Netherlands, 1999, pp. 265–319.

    Google Scholar 

  38. Piehler, M.F., Twomey, L.J., Hall, N.S., and Pearl, H.W., Impacts of inorganic nutrient enrichment on phytoplankton community structure and function Pamlico Sound, NC, USA, Estuar. Coast. Shelf Sci., 2004, no. 61, pp. 197–209.

    Article  Google Scholar 

  39. Putt, M. and Stoecker, D.K., An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 1989, no. 34, pp. 1097–1103.

    Article  Google Scholar 

  40. Rekik, A., Drira, Z., Guermazi, W., Elloumi, J., Maalej, S., Aleya, L., and Ayadi, H., Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast, Mar. Pollut. Bull., 2012, no. 64, pp. 336–346.

    Article  Google Scholar 

  41. Rekik, A., Maalej, S., Ayadi, H., and Aleya, L., Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast, Envi ron. Sci. Pollut. Res., 2013. http://dx.doi.org/10.1007/s11356-012-1297-y

    Google Scholar 

  42. Rekik, A., Denis, M., Aleya, L., Maalej, S., and Ayadi, H., Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration, Mar. Pollut. Bull., 2013, no. 67, pp. 82–93.

    Article  Google Scholar 

  43. Rekik, A., Denis, M., Dugenne, M., Barani, A., Maalej, S., and Ayadi, H., Seasonal distribution of ultraphytoplankton and heterotrophic prokaryotes in relation to abiotic variables on the north coast of Sfax after restoration, Mar. Pollut. Bull., 2014, no. 84, pp. 280–305.

    Article  Google Scholar 

  44. Sabetta, L., Alberto Basset, A., and Spezie, G., Marine phytoplankton size–frequency distributions: Spatial patterns and decoding mechanisms, Estuar. Coast. Shelf Sci., 2008, no. 80, pp. 181–192.

    Article  Google Scholar 

  45. Schnepf, E., Meier, R., and Drebes, G., Stability and deformation of diatom chloroplasts during food uptake of the parasitic dinoflagellate, Paulsenella (Dinophyta), Phycologia, 1988, no. 2, pp. 283–290.

    Article  Google Scholar 

  46. SCOR-UNESCO, Determination of Photosynthetic Pigments in Sea Water, Paris: UNESCO, 1966.

  47. Song, X., Huang, L., Zhang, J., Huang, X., Zhang, J., Yin, J., Tan, Y., and Liu, S., Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer, Mar. Pollut. Bull., 2004, no. 49, pp. 1036–1044.

    Article  Google Scholar 

  48. Stelfox-Widdicombe, C.E., Archer, S.D., Burkill, P.H., and Stefels, J., Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring, J. Sea Res., 2004, no. 51, pp. 37–51.

    Article  Google Scholar 

  49. Strüder-Kypke, M.C. and Montagnes, D.J.S., Development of web-based guides to planktonic protests, Aquat. Microb. Ecol., 2002, no. 27, pp. 203–207.

    Article  Google Scholar 

  50. Smetacek, V., The annual cycle of protozooplankton in the Kiel Bight, Mar. Biol., 1981, no. 63, pp. 1–11.

    Article  Google Scholar 

  51. Tayibi, H., Choura, M., Lopez, F.A., Alguacil, F.A., and Lopez-Delgado, A., Environmental impact and management of phosphogypsum, J. Environ. Manag., 2009, pp. 1–10.

    Google Scholar 

  52. Tillmann, U., Interactions between planktonic microalgae and protozoan grazers, J. Phycol., 2004, no. 2, pp. 156–168.

    Google Scholar 

  53. Tomas, C.R., Hasle, G.R., Steidinger, A.K., Syvertsen, E.E., and Tangen, C., Identifing Marine Diatoms and Dinoflagellates, Academic Press Inc., 1996.

    Google Scholar 

  54. Tregouboff, G. and Rose, M., Manuel de planctonologie mediterraneenne, Vol. II, Paris: CNRS, 1957, p.592.

    Google Scholar 

  55. Utermöhl, H., Zurvervolkommungder quantitativen phytoplankton Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte, Limnol., 1958, no. 9, pp. 1–38.

    Google Scholar 

  56. Vadrucci, M.R., Cabrini, M., and Basset, A., Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion, Transitional Wat. Bull., 2007, no. 2, pp. 83–102.

    Google Scholar 

  57. Vitousek, P.M. and Howarth, R.W., Nitrogen limitation on land and in the sea-how can it occur?, Biogeochem., 1991, no. 13, pp. 87–115.

    Article  Google Scholar 

  58. Zhang, L.Y., Sun, J., Liu, D.Y., and Yu, Z.S., Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China, Acta Oceanol. Sin., 2005, no. 24, pp. 85–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannet Elloumi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekik, A., Elloumi, J., Drira, Z. et al. Coupling of phytoplankton and ciliate biomasses to environmental factors along the north coast of Sfax (Tunisia, Eastern Mediterranean Sea). Water Resour 44, 849–863 (2017). https://doi.org/10.1134/S0097807817090019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817090019

Keywords

Navigation