Skip to main content
Log in

Microzooplankton grazing and selectivity of phytoplankton in coastal waters

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Microzooplankton grazing activity in the Celtic Sea and Carmarthen Bay in summer 1983 and autumn 1984 was investigated by applying a dilution technique to high-performance liquid chromatographic (HPLC) analysis of photosynthetic pigments in phytoplankton present within natural microplankton communities. Specific grazing rates on phytoplankton, as measured by the utilisation of chlorophyll a, were high and varied seasonally. In surface waters during the autumn, grazing varied between 0.4 d-1 in the bay and 1.0 d-1 in the Celtic Sea, indicating that 30 and 65% of the algal standing stocks, respectively, were grazed daily. Grazing rates by microzooplankton within the thermocline in summer suggest that 13 to 42% of the crop was grazed each day. Microzooplankton showed selection for algae containing chlorophyll b, in spite of a predominance of chlorophyll c within the phytoplankton community. Changes in taxon-specific carotenoids indicated strong selection for peridinin, lutein and alloxanthin and selection against fucoxanthin and diadinoxanthin. This indicates a trophic preference by microzooplankton for dinoflagellates, cryptophytes, chlorophytes and prasinophytes and selection against diatoms, even when the latter group forms the largest crop within the phytoplankton. Interestingly, those algal taxa preferentially grazed also showed the highest specific growth-rates, suggesting a dynamic feed-back between microzooplankton and phytoplankton. Conversion of grazing rates on each pigment into chlorophyll a equivalents suggests firstly, that in only one experiment could all the grazed chlorophyll a be accounted for by the attrition of other chlorophylls and carotenoids, and secondly that in spite of negative selection, a greater mass of diatoms could be grazed by microzooplankton than any other algal taxon. The former may be due either to a fundamental difference in the break-down rates of chlorophyll a compared to other pigments, or to cyanobacteria forming a significant food source for microzooplankton. In either case, chlorophyll a is considered to be a good measure of grazing activity by microzooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bartram, W. C.: Experimental development of a model for the feeding of neritic copepods on phytoplankton. J. Plankton Res. 3, 25–51 (1980)

    Google Scholar 

  • Beers, J. R. and G. L. Stewart: Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res. 18, 861–883 (1971)

    Google Scholar 

  • Blackbourn, D. J.: The feeding biology of tintinnid Protozoa and some other inshore microzooplankton, 224 pp. PhD thesis, University of British Columbia, Vancouver, B.C. 1974

    Google Scholar 

  • Burkill, P. H.: Ciliates and other microplankton components of a nearshore foodweb: standing stocks and production processes. Annls Inst. océanogr., Paris (N.S.) 58, 335–350 (1982)

    Google Scholar 

  • Burkill, P. H., N. J. P. Owens and R. F. C. Mantoura: Planktonic nitrogen cycling in coastal waters (Abstract). In: Nitrogen as an ecological factor, p. 442. Ed. by J. A. Lee, S. McNeill and I. H. Rorison. Oxford: Blackwell Scientific Publications 1983

    Google Scholar 

  • Capriulo, G. M.: Feeding of field collected tintinnid micro-zooplankton on natural food. Mar. Biol. 71, 73–86 (1982)

    Google Scholar 

  • Capriulo, G. M. and E. J. Carpenter: Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound. Mar. Biol. 56, 319–326 (1980)

    Google Scholar 

  • Conover, R. J.: Feeding interactions in the pelagic zone. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 173, 66–76 (1978)

    Google Scholar 

  • Currie, R. I.: Pigments in zooplankton faeces. Nature, Lond. 193, 956–957 (1962)

    Google Scholar 

  • Foss, P., R. R. L. Guillard and S. Liaaen-Jensen: Prasinoxanthin, a chemosystematic marker for algae. Phytochem. 23, 1629–1633 (1984)

    Google Scholar 

  • Gifford, D. J.: Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar. Ecol. Prog. Ser. 23, 257–267 (1985)

    Google Scholar 

  • Hager, A. und H. Stransky: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72, 68–83 (1970a)

    Google Scholar 

  • Hager, A. und H. Stransky: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophycaea, Euglenophycaea, Bacillariophycaea, Chrysophyceae, und Phaeophyceae. Arch. Mikrobiol. 73, 77–89 (1970b)

    Google Scholar 

  • Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47, 177–189 (1978a)

    Google Scholar 

  • Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations. Mar. Biol. 47, 191–197 (1978b)

    Google Scholar 

  • Heinbokel, J. F. and J. R. Beers: Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52, 23–32 (1979)

    Google Scholar 

  • Hollander, M. and D. A. Wolfe: Non-parametric statistical methods. 503 pp. New York: John Wiley 1973

    Google Scholar 

  • Institute for Marine Environmental Research: Annual Report 1983, 91 pp. Plymouth: Institute for Marine Environmental Research 1984

    Google Scholar 

  • Jeffrey, S. W., M. Sielecki and F. T. Haxo: Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11, 374–384 (1975)

    Google Scholar 

  • Jen, J. J. and G. Mackinney: On the photodecomposition of chlorophyll in vitro. II. Intermediate and breakdown products. Photochem. Photobiol. 11, 303–308 (1970)

    Google Scholar 

  • Johannes, R. E.: Phosphorus excretion as related to body size in marine animals: microzooplankton and nutrient regeneration. Science, N.Y. 146, 923–924 (1964)

    Google Scholar 

  • Johannes, R. E.: Influence of marine Protozoa on nutrient regeneration. Limnol. Oceanogr. 10, 434–442 (1965)

    Google Scholar 

  • Joint, I. R., N. J. P. Owens and A. J. Pomroy: The seasonal production of picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28, 251–258 (1986)

    Google Scholar 

  • Joint, I. R. and A. J. Pomroy: Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77, 19–27 (1983)

    Google Scholar 

  • Joint, I. R. and R. Williams: Demands of the herbivore community on phytoplankton production in the Celtic Sea in August. Mar. Biol. 87, 297–306 (1985)

    Google Scholar 

  • Klein, B., W. Geiskes and G. Kraay: Digestion of chlorophylls and carotenoids by the marine protozoan Oxyrrhis marina studied by HPLC analysis of algal pigments. J. Plankton Res. 8, 827–836 (1986)

    Google Scholar 

  • Landry, M. R., L. W. Haas and V. L. Fagerness: Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16, 127–133 (1984)

    Google Scholar 

  • Landry, M. R. and R. P. Hassett: Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288 (1982)

    Google Scholar 

  • Liaaen-Jensen, S.: Algal carotenoids and chemosystematics. In: Marine natural products chemistry, pp 239–259. Ed. by D. J. Faulkner and W. H. Fennical. New York: Plenum Press 1977

    Google Scholar 

  • Lohmann, H.: Untersuchung zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. (Abt. Kiel) 10, 131–370 (1908)

    Google Scholar 

  • Mantoura, R. F. C. and C. A. Llewellyn: The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analyt. chim. Acta 151, 297–314 (1983)

    Google Scholar 

  • Mantoura, R. F. C. and C. A. Llewellyn: Trace enrichments of marine algal pigments for use with HPLC-diode array spectroscopy. J. High Resolution Chromatography Communs 7, 632–634 (1984)

    Google Scholar 

  • Mantoura, R. F. C., N. J. P. Owens and P. H. Burkill: Nitrogen biogeochemistry and modelling of Carmarthen Bay. In: SCOPE Symposium on Nitrogen Cycling in Coastal Marine Environments. Ed. by T. H. Blackburn and J. Sørensen. New York: Wiley (In press)

  • Nival, P. and S. Nival: Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnol. Oceanogr. 21, 24–38 (1976)

    Google Scholar 

  • Owens, N. J. P., R. F. C. Mantoura, P. H. Burkill, R. J. M. Howland, A. J. Pomroy and E. M. S. Woodward: Nutrient cycling studies in Carmarthen Bay: phytoplankton production, nitrogen assimilation and regeneration. Mar. Biol. 93, 329–342 (1986)

    Google Scholar 

  • Parsons, T. R., M. Takahashi and B. Hargrave: Biological oceanographic processes, 3rd ed. 330 pp. Oxford: Pergamon Press 1984

    Google Scholar 

  • Rassoulzadegan, F.: Dimensions et taux d'ingestion des particules consommées par un tintinide: Favella ehrenbergii (Clap. et Lachm.) Jørg., Cilié pélagique. Annls Inst. océanogr., Paris (N.S.) 54, 17–24 (1978)

    Google Scholar 

  • Rassoulzadegan, F.: Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg., fed on naturally occurring particulate matter. Annls Inst. océanogr., Paris (N.S.) 58, 177–184 (1982)

    Google Scholar 

  • Rassoulzadegan, F. and M. Etiènne: Grazing rate of the tintinnid Stenosemella ventricosa (Clap. and Lachm.) Jørg on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26, 258–270 (1981)

    Google Scholar 

  • Riley, G. A.: Oceanography of Long Island Sound 1952–1954. IX. Production and utilisation of organic matter. Bull. Bingham oceanogr. Coll. 15, 324–341 (1956)

    Google Scholar 

  • Robins, D. B. and I. E. Bellan: A controlled-temperature plankton wheel. Mar. Biol. 92, 587–593 (1986)

    Google Scholar 

  • Scott, J. M.: Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. mar. biol. Ass. U.K. 60, 681–702 (1980)

    Google Scholar 

  • Shuman, F. R. and C. J. Lorenzen: Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20, 580–586 (1975)

    Google Scholar 

  • Simpson, J. H.: A boundary front in the summer regime of the Celtic Sea. Estuar. cstl mar. Sci. 4, 71–81 (1976)

    Google Scholar 

  • Smetacek, V.: The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11 (1981)

    Google Scholar 

  • Stoecker, D., R. R. L. Guillard and R. M. Kavee: Selective predation by Favella ehrenbergii (Tintinnida) on and among dinoflagellates. Biol. Bull. mar. biol. Lab., Woods Hole 160, 136–145 (1981)

    Google Scholar 

  • Vesk, M. and S. W. Jeffrey: The effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol. 13, 280–288 (1977)

    Google Scholar 

  • Welschmeyer, N. A. and C. J. Lorenzen: Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30, 1–21 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkill, P.H., Mantoura, R.F.C., Llewellyn, C.A. et al. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93, 581–590 (1987). https://doi.org/10.1007/BF00392796

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392796

Keywords

Navigation