Skip to main content
Log in

Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace

  • RENEWABLE ENERGY SOURCES AND HYDROPOWER
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium \({\text{SrCoO}_{{3 - \delta }}}\) and barium \({\text{BaCoO}_{{3 - \delta }}},\) obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co2O3 + SrCO3 or barium Co2O3 + BaCO3 in a stream of high (150 W/cm2) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10–6 K–1) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co3+ = Co2+ + Co4+. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. S. Razavi, M. Hajizadeh-Oghaz, O. Amiri, and M. S. Morassaei, “Barium cobaltite nanoparticles: Sol-gel synthesis and characterization and their electrochemical hydrogen storage properties,” Int. J. Hydrogen Energy 46, 886−895 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.196

    Article  Google Scholar 

  2. M. N. Aswathy and A. M. Umarji, “Rare earth barium cobaltites: Potential candidates for low-temperature oxygen separation,” SN Appl. Sci. 2, 449 (2020). https://doi.org/10.1007/s42452-020-2218-1

    Article  Google Scholar 

  3. Zhèn Yáng, J. Martynczuk, K. Efimov, A. S. Harvey, A. Infortuna, P. Kocher, and L. J. Gauckler, “Oxygen-vacancy-related structural phase transition of Ba0.8Sr0.2Co0.8Fe0.2O3–δ,” Chem. Mater. 23, 3169−3175 (2011). https://doi.org/10.1021/cm200373r

    Article  Google Scholar 

  4. R. K. Hona and F. Ramezanipour, “Disparity in electrical and magnetic properties of isostructural oxygen-deficient perovskites BaSrCo2O6–δ and BaSrCoFeO6–δ,” J. Mater. Sci.: Mater. Electron. 29, 13464−13473 (2018). https://doi.org/10.1007/s10854-018-9471-8

    Article  Google Scholar 

  5. C. Wu, Y. Gai, J. Zhou, X. Tang, Y. Zhang, W. Ding, and C. Sun, “Structural stability and oxygen permeability of BaCo1–xNb xO3–δ ceramic membranes for air separation,” J. Alloys Compd. 638, 38−43 (2015). https://doi.org/10.1016/j.jallcom.2015.03.056

    Article  Google Scholar 

  6. B. Raveau and M. M. Seikh, “Magnetic and physical properties of cobalt perovskites,” Handb. Magn. Mater. 23, 161−289 (2015). https://doi.org/10.1016/B978-0-444-63528-0.00003-6

    Article  Google Scholar 

  7. H. Müller-Buschbaum, “On the crystal chemistry of alkaline earth and rare earth-oxocobaltates,” Z. Anorg. Allg. Chem. 639, 2715−2735 (2013). https://doi.org/10.1002/zaac.201300243

    Article  Google Scholar 

  8. J. Takeda, R. Kanno, T. Takeda, O. Yamamoto, M. Takano, and Y. Bando, “Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCo-Ox (2.29 < x > 2.80),” J. Anorg. Allg. Chem. 540−541, 259–270 (1986). https://doi.org/10.1002/zaac.19865400929

  9. H. Taguchi, M. Shimada, and M. Koizumi, “The effect of oxygen vacancy on the magnetic properties in the system SrCoO3−δ (0 < δ < 0.5),” J. Solid State Chem. 29, 221–225 (1979). https://doi.org/10.1016/0022-4596(79)90227-5

    Article  Google Scholar 

  10. O. V. Godzhieva, N. V. Porotnikov, G. E. Nikiforova, and E. A. Tishchehko, “Preparation and physicochemical study of BaCoO3 – x and SrCoO3 – x compounds,” J. Inorg. Chem. 35, 24–26 (1990).

    Google Scholar 

  11. X. L. Wang, H. Sakurai, and E. Takayama-Muromachi, “Synthesis, structures, and magnetic properties of novel Roddlesden–Popper homologous series Srn + 1ConO3n + 1 (n = 1, 2, 3, 4, and ∞),” J. Appl. Phys. 97, 519 (2005). https://doi.org/10.1063/1.1855534

    Article  Google Scholar 

  12. Z. Q. Deng, W. S. Yang, W. Liu, and C. S. Chen, “Oxygen-vacancy-related structural phase transition of Ba0.8Sr0.2Co0.8Fe0.2O3–δ,” J. Solid State Chem. 179, 362 (2006). https://doi.org/10.1021/cm200373r

    Article  Google Scholar 

  13. W. Zhou, R. Ran, W. Jin, and S. Zongping, “In situ templating synthesis of conic Ba0.5Sr0.5Co0.8Fe0.2O3–δ perovskite at elevated temperature,” Bull. Mater. Sci. 32, 407−412 (2009). https://doi.org/10.1007/s12034-009-0059-z

    Article  Google Scholar 

  14. Z. Hu, H. Zhang, J. Wang, and L. Chen, “Fabrication and thermosensitive characteristics of BaCoO3−δ ceramics for low temperature negative temperature coefficient thermistor,” J. Mater. Sci.: Mater. Electron. 28, 6239−6244 (2017). https://doi.org/10.1007/s10854-016-6304-5

    Article  Google Scholar 

  15. K. Yamaura, H. W. Zandbergen, K. Abe, and R. J. Cava, “Synthesis and properties of the structurally one-dimensional cobalt oxide Ba1 − xSrxCoO3−d (0 ≤ x ≤ 0.5),” J. Solid State Chem. 146, 96−102 (1999).

    Article  Google Scholar 

  16. C. Felser, K. Yamaura, and R. J. Cava, “The electronic band structure of BaCoO3,” J. Solid State Chem. 146, 411–417 (1999).

    Article  Google Scholar 

  17. G. Herranz and G. P. Rodríguez, “Uses of concentrated solar energy in materials science,” in Solar Energy, Ed. by R. D. Rugescu (Intech, 2010).

    Google Scholar 

  18. D. Fernández-González, I. Ruiz-Bustinza, C. González-Gascac, J. Piñuela Novala, J. Mochón-Castaños, J. Sancho-Gorostiaga, and L. F. Verdeja, “Concentrated solar energy applications in materials science and metallurgy,” Sol. Energy 170, 520−540 (2018). https://doi.org/10.1016/j.solener.2018.05.065

    Article  Google Scholar 

  19. R. Y. Akbarov and M. S. Paizullakhanov, “Characteristic features of the energy modes of a large solar furnace with a capacity of 1000 kW,” Appl. Sol. Energy 54, 99−109 (2018). https://doi.org/10.3103/S0003701X18020020

    Article  Google Scholar 

  20. K. Koumoto, I. Terasaki, and N. Murayama, Oxide Thermoelectrics (Trivandrum, India, 2002).

    Google Scholar 

  21. K. Boulahya, J. C. Ruiz-Morales, M. Hernando, J. M. Gonzalez-Calbet, and M. Parras, “Synthesis, structural, magnetic and electrical study of BaSrCo2O5, a highly disordered cubic perovskite,” ChemInform 40, 2818−2828 (2009). https://doi.org/10.1002/chin.200933020

    Article  Google Scholar 

  22. C. de la Calle, J. Antonio Alonso, A. Aguadero, M. T. Fernández-Díaz, and F. Porcher, “An investigation of the polytypical structure of Sr0.2Ba0.8CoO3 – δ by neutron powder diffraction,” Z. Kristallogr. – Cryst. Mater. 225, 209−215 (2010). https://doi.org/10.1524/zkri.2010.1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Paizullahanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paizullahanov, M.S., Parpiev, O.R., Salomov, U.R. et al. Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace. Therm. Eng. 70, 384–387 (2023). https://doi.org/10.1134/S004060152305004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004060152305004X

Keywords:

Navigation