Skip to main content
Log in

Analysis of alumina/water nanofluid in thermally developing region of a circular tube

  • Heat and Mass Transfer and Properties of Working Fluids and Materials
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Analysis of Al2O3/water nanofluid flow in thermally developing region of a circular tube is the subject of present numerical study. In order to consider the hydrodynamically fully developed condition in the tube, a fully developed velocity profile is defined in the inlet section of tube. Three-dimensional computations are performed for a wide variety of nanoparticle concentrations (1 ≤ γ ≤ 10%). On the other hand, for examination of nanoparticle size, effects on the thermal characteristics, two different particle sizes of d p = 25 and 75 nm are applied. The resulting governing equations are solved numerically by means of the finite volume method. For enhanced visualization, different results are presented in thermally developing region. It is obtained that suspending the Al2O3 nanoparticles in pure water increases the thermal boundary layer growing rate. In addition, an increase on the heat transfer rate is observed in thermal boundary layer using the Al2O3 nanoparticles in which this enhancement varies as a function of nanoparticle size and nanoparticle volume concentration. However, it is found that the role of nanoparticle volume concentration on the thermal characteristics such as thermal boundary layer growing rate, temperature gradient, and heat transfer enhancement is significantly important comparing to the nanoparticle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanopart. Res. 6 (6), 577–588 (2004).

    Article  Google Scholar 

  2. C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon,” Int. J. Heat Fluid Flow 28 (6), 1492–1506 (2007).

    Article  Google Scholar 

  3. S. M. S. Murdhed, K. C. Leong, and C. Yang, “Investigations of thermal conductivity and viscosity of nanofluids,” Int. J. Therm. Sci. 47 (5), 560–568 (2008).

    Article  Google Scholar 

  4. J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (Clarendon, Oxford, 1881), Vol. 1.

    MATH  Google Scholar 

  5. S. Lee, S. U.-S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transfer 121 (2), 280–289 (1999). doi 10.1115/1.2825978

    Article  Google Scholar 

  6. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer 125 (4), 567–574 (2003). doi 10.1115/1.1571080

    Article  Google Scholar 

  7. R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two component system,” Ind. Eng. Chem. Fundam. 3 (1), 187–191 (1962). doi 10.1021/i160003a005

    Article  Google Scholar 

  8. W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” J. Nanopart. Res. 5 (1), 167–171 (2003). doi 10.1023/A:1024438603801

    Article  Google Scholar 

  9. W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model,” J. Nanopart. Res. 5 (4), 355–361 (2004). doi 10.1007/s11051-004-2601-7

    Article  Google Scholar 

  10. Y. Xuan, Q. Li, and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AIChE J. 49 (4), 1038–1044 (2003). doi 10.1002/aic.690490420

    Article  Google Scholar 

  11. S. M. Aminossadati and B. Ghasemi, “Conjugate natural convection in an inclined nanofluid-filled enclosure,” Int. J. Numer. Methods Heat Fluid Flow 22 (4), 403–423 (2012). doi 10.1108/09615531211215729

    Article  Google Scholar 

  12. B. Ghasemi and S. M. Aminossadati, “Natural convection heat transfer in an inclined enclosure filled with a water CuO nanofluid,” Numer. Heat Transfer, Part A 55 (8), 807–823 (2009). doi 10.1080/10407780902864623

    Article  Google Scholar 

  13. M. Mahmoodi, “Numerical simulation of free convection of a nanofluid in L-shaped cavities,” Int. J. Therm. Sci. 50 (9), 1731–1740 (2011).

    Article  Google Scholar 

  14. E. Abu-Nada, “Effects of variable viscosity and thermal conductivity of Al2O3/water nanofluid on heat transfer enhancement in natural convection,” Int. J. Heat Fluid Flow 30 (4), 679–690 (2009). doi 10.1016/j.ijheatfluidflow.2009.02.003

    Article  Google Scholar 

  15. R. Mokhtari Moghari, A. Akbarinia, M. Shariat, F. Talebi, and R. Laur, “Two phase mixed convection Al2O3-water nanofluid flow in an annulus,” Int. J. Multiphase Flow 37 (6), 585–595 (2011). doi 10.1016/j.ijmultiphaseflow.2011.03.008

    Article  Google Scholar 

  16. A. A. Abbasian Arani, S. Mazrouei Sebdani, M. Mahmoodi, A. Ardeshiri, and M. Aliakbari, “Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on sidewalls using nanofluid,” Superlattices Microstruct. 51 (6), 893–911 (2012). doi 10.1016/j.spmi.2012.02.015

    Article  Google Scholar 

  17. L. Syam Sundar, N. T. Ravi Kumar, M. T. Naik, and K. V. Sharma, “Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study,” Int. J. Heat Mass Transfer 55 (11–12), 2761–2768 (2012). doi 10.1016/j.ijheatmasstransfer.2012.02.040

    Article  Google Scholar 

  18. K. Wongcharee and S. Eiamsa-ard, “Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis,” Int. Commun. Heat Mass Transfer 38 (6), 742–748 (2011). doi 10.1016/j.icheatmasstransfer. 2011.03.011

    Article  Google Scholar 

  19. D. Lelea, “The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink,” Int. J. Heat Mass Transfer 54 (17–18), 3891–3899 (2011). doi 10.1016/j.ijheatmasstransfer.2011.04.038

    Article  MATH  Google Scholar 

  20. M. Keshavarz Moraveji, M. Darabi, S. M. Hossein Haddad, and R. Davarnejad, “Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics,” Int. Commun. Heat Mass Transfer 38 (9), 1291–1295 (2011). doi 10.1016/j.icheatmasstransfer.2011.06.011

    Article  Google Scholar 

  21. A. A. Abbasian-Arani and J. Amani, “Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid,” Exp. Therm. Fluid Sci. 44, 520–533 (2013). doi 10.1016/j.expthermflusci.2012.08.014

    Article  Google Scholar 

  22. V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, and S. Wongwises, “Unconfined laminar nanofluid flow and heat transfer around a square cylinder,” Int. J. Heat Mass Transfer 55 (5–6), 1475–1485 (2012). doi 10.1016/j.ijheatmasstransfer.2011.10.030

    Article  MATH  Google Scholar 

  23. T. P. Teng, Y. H. Hung, C. S. Jwo, C. C. Chen, and L. Y. Jeng, “Pressure drop of TiO2 nanofluid in circular pipes,” Particuology 9 (5), 486–491 (2011). doi 10.1016/j.partic.2011.05.001

    Article  Google Scholar 

  24. G. Roy, I. Gherasim, F. Nadeau, G. Poitras, and C. T. Nguyen, “Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows,” Int. J. Therm. Sci. 58, 120–129 (2012).

    Article  Google Scholar 

  25. S. M. Peygamberzadeh, S. H. Hashemabadi, M. S. Jamnani, and S. M. Hoseini, “Improving the cooling performance of automobile radiator with Al2O3/water nanofluid,” Appl. Therm. Eng. 31 (10), 1833–1838 (2011).

    Article  Google Scholar 

  26. S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer,” Exp. Therm. Fluid Sci. 38, 54–60 (2012).

    Article  Google Scholar 

  27. S. Sudarmadji, S. Soeparman, S. Wahyudi, and N. Hamidy, “Effects of cooling process of Al2O3-water nanofluid on convective heat transfer,” FME Trans. 42 (2), 155–160 (2014). doi 10.5937/fmet1402155S

    Article  Google Scholar 

  28. R. Sekhar, K. V. Sharma, R. Thundil Karupparaj, and C. Chiranjeevi, “Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications,” Procedia Eng. 64, 1474–1484 (2013). doi 10.1016/j.proeng.2013.09.229

    Article  Google Scholar 

  29. M. Marzougui, M. Hammami, and R. Ben Maad, “Numerical simulation into the convective heat transfer of Al2O3 and CuO nanofluids flowing through a straight tube using the two phase modeling,” Nanosci. Nanotechnol. 6 (1A), 122–131 (2016). doi 10.5923/c.nn.201601.24

    Google Scholar 

  30. B. Sahin, G. G. Gültekin, E. Manay, and S. Karagoz, “Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid,” Exp. Therm. Fluid Sci. 50, 21–28 (2013).

    Article  Google Scholar 

  31. P. C. Mukesh Kumar, J. Kumar, and S. Suresh, “Experimental investigation on convective heat transfer and friction factor in a helically coiled tube with Al2O3/water nanofluid,” J. Mech. Sci. Technol. 27 (1), 239–245 (2013). doi 10.1007/s12206-012-1206-9

    Article  Google Scholar 

  32. A. Noghrehabadi and R. Pourrajab, “Experimental investigation of forced convective heat transfer enhancement of ?-Al2O3/water nanofluid in a tube,” J. Mech. Sci. Technol. 30 (2), 943–952 (2016). doi 10.1007/s12206-016-0148-z

    Article  Google Scholar 

  33. B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics (Wiley, New York, 2009).

    MATH  Google Scholar 

  34. R. W. Fox, A. T. McDonald, and P. J. Pritchard, Introduction to Fluid Mechanics (Wiley, New York, 2006).

    MATH  Google Scholar 

  35. F. P. Incropera, D. P. De Witt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, New York, 2011).

    Google Scholar 

  36. H. C. Brinkman, “The viscosity of concentrated suspension and solution correlations,” J. Chem. Phys. 20 (4), 571–581 (1952).

    Article  Google Scholar 

  37. R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transfer 52 (21–22), 4675–4682 (2009). doi 10.1016/j.ijheatmasstransfer.2009.06.027

    Article  MATH  Google Scholar 

  38. X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci. 46 (1), 1–19 (2007). doi 10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

  39. www.accuratus.com.

  40. S. V. Patanker, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Hassanzadeh.

Additional information

Published in Russian in Teploenergetika.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, R., Ozbek, A. & Bilgili, M. Analysis of alumina/water nanofluid in thermally developing region of a circular tube. Therm. Eng. 63, 876–886 (2016). https://doi.org/10.1134/S0040601516120028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601516120028

Keywords

Navigation