Skip to main content
Log in

Experimental investigation of forced convective heat transfer enhancement of γ-Al2O3/water nanofluid in a tube

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The effect of nanofluids on heat transfer inside circular tubes under uniform constant heat flux boundary condition was investigated. The working nanofluid was a suspension of γ-Al2O3 nanoparticles of average diameter 20 nm. The heat transfer coefficients were calculated experimentally in the range of 1057 < Re < 2070 with different particle volume concentrations of 0.1%, 0.3% and 0.9%. Increasing the particle volume fraction led to enhancement of the convective heat transfer coefficient. The results show that the average heat transfer coefficient increased 16.8% at 0.9% volume concentration and Reynolds number of 2070 compared with distilled water. In addition, the enhancement of the convective heat transfer was particularly significant in the entrance region and decreased with axial distance. Finally, an empirical correlation for Nusselt number has been proposed for the present range of nanofluids. The mean deviation between the predicted Nusselt number and experimental values for the new correlation is 3.57%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Duangthongsuk and S. B. Wongwises, Comparison of the effects of measured and computed thermo-physical properties of nanofluids on heat transfer performance, Exp. Therm. Fluid. Sci., 34 (2010) 616–624.

    Article  Google Scholar 

  2. J. H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transf., 51 (2008) 2651–2656.

    Article  Google Scholar 

  3. S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME FED, 231 (1995) 99–105.

    Google Scholar 

  4. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78 (2001) 718–720.

    Article  Google Scholar 

  5. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., 121 (1999) 280–289.

    Article  Google Scholar 

  6. Y. M. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat. Fluid. Flow, 21 (2000) 58–64.

    Article  Google Scholar 

  7. H. Xie, J. Wang, T. G. Xie, Y. Liu and F. Ai, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91 (2002) 4568–4572.

    Article  Google Scholar 

  8. S. K. Das, S. U. S. Choi and H. E. Patel, Heat transfer in nanofluids-a review, Heat. Transf. Eng., 37 (2006) 3–19.

    Article  Google Scholar 

  9. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congr. Expos., San Francisco, CA (1995) 99–105.

    Google Scholar 

  10. X. W. Wang and X. F. Xu, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat. Transf., 13 (1999) 474–480.

    Article  Google Scholar 

  11. W. Daungthongsuk and S. Wongwises, A critical review of convective heat transfer nanofluids, Renew. Sustain. Energy Rev., 11 (2007) 797–817.

    Article  Google Scholar 

  12. V. Trisaksri and S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renew. Sustain. Energy Rev., 11 (2007) 512–523.

    Article  Google Scholar 

  13. M. Chandrasekar, S. Suresh and T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids -A review, Renew. Sustain. Energy Rev., 16 (2012) 3917–3938.

    Article  Google Scholar 

  14. D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat. Mass. Transf., 47 (2004) 5181–5188.

    Article  Google Scholar 

  15. S. Z. Heris, S. Gh. Etemad and M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat. Mass. Transf., 33 (2006) 529–535.

    Article  Google Scholar 

  16. K. B. Anoop, T. Sundararajan and S. K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat. Mass. Transf., 52 (2009) 2189–2195.

    Article  MATH  Google Scholar 

  17. E. Esmaeilzadeh, H. Almohammadi, Sh. N. Vatan and A. N. Omrani, Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube, Int. J. of Therm. Sci., 63 (2013) 31–37.

    Article  Google Scholar 

  18. L. S. Sundar and K. V. Sharma, Heat transfer enhancements of low volume concentration Al2O3 nanofluid and with longitudinal strip inserts in a circular tube, Int. J. Heat. Mass. Transf., 53 (2010) 4280–4286.

    Article  Google Scholar 

  19. P. C. Mukesh Kumar, J. Kumar and S. Suresh, Experimental investigation on convective heat transfer and friction factor in a helically coiled tube with Al2O3/water nanofluid, J. Mech. Sci. Technol., 27 (2013) 239–245.

    Article  Google Scholar 

  20. A. J. Chamkha, Unsteady laminar hydromagnetic fluidparticle flow and heat transfer in channels and circular pipes, Int. J. Heat Fluid Flow, 21 (6) (2000) 740–746.

    Article  Google Scholar 

  21. N. Akbar, Heat transfer and carbon nano tubes analysis for the peristaltic flow in a diverging tube, Meccanica, 50 (2015) 39–47.

    Article  MathSciNet  Google Scholar 

  22. M. A. Sheremet, T. Groşan and I. Pop, Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model, J. Heat. Transf., 136 (2014) 082501.

    Article  Google Scholar 

  23. M. A. Sheremet and I. Pop, Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model, Int. J. Heat Mass Transf., 79 (2014) 137–145.

    Article  Google Scholar 

  24. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006) 240–250.

    Article  Google Scholar 

  25. A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, Int. J. Thermal Sci., 54 (2012) 253–261.

    Article  Google Scholar 

  26. O. D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate, Int. J. Numer. Methods. Heat. & Fluid. Flow, 23 (2013) 1291–1303.

    Article  MathSciNet  Google Scholar 

  27. A. Zaraki, M. Ghalambaz, A. J. Chamkha, M. Ghalambaz and D. D. Rossi, Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: Effects of size, shapen and type of nanoparticles, type of base fluid and working temperature, Adv. Powder. Technol. (2015). doi:10.1016/j.apt.2015.03.012.

    Google Scholar 

  28. A. Noghrehabadi, M. Saffarian, R. Pourrajab and M. Ghalambaz, Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip, J. Mech. Sci. Technol., 27 (2013) 927–937.

    Article  Google Scholar 

  29. M. H. Mkwizu and O. D. Makinde, Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling, Comptes Rendus Mécanique, 343 (2015) 38–56.

    Article  Google Scholar 

  30. N. Akbar, Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with peristalsis, Entropy, 17 (2015) 1411–1424.

    Article  Google Scholar 

  31. L. S. Sundar, M. T. Naik, K. V. Sharma, M. K. Singh and T. Ch. S. Reddy, Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid, Exp. Therm. Fluid. Sci., 37 (2012) 65–71.

    Article  Google Scholar 

  32. H. R. Rayatzadeh, M. Saffar-Avval, M. Mansourkiaei and A. Abbassi, Effects of continuous sonication on laminar convective heat transfer inside a tube using water-TiO2 nanofluid, Exp. Therm. Fluid. Sci., 48 (2013) 8–14.

    Article  Google Scholar 

  33. B. Sahin, G. G. Gültekin, E. Manay and S. Karagoz, Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid, Exp. Therm. Fluid. Sci., 50 (2013) 21–28.

    Article  Google Scholar 

  34. W. H. Azmi, K. V. Sharma, P. K. Sarma, R. Mamat, S. Anuar and V. D. Rao, Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid, Exp. Therm. Fluid. Sci., 51 (2013) 103–111.

    Article  Google Scholar 

  35. S. K. Das, S. U. S. Choi, W. Yu and T. Pradeep, Nanofluids, Science and technology, Wiley (2008).

    Google Scholar 

  36. S. K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat. Transf., 125 (2003) 567–574.

    Article  Google Scholar 

  37. H. Xie, L. Chen and Q. Wu, Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al2O3 particles, High Temperatures -High Pressures, 37 (2008) 127–135.

    Google Scholar 

  38. J. C. Maxwell, A treatise on electricity and magnetism, Second ed., Clarendon Press, Oxford, UK (1881).

    Google Scholar 

  39. B. Pak and Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11 (1998) 151–170.

    Article  Google Scholar 

  40. Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat. Mass. Transf., 43 (2000) 3701–3707.

    Article  MATH  Google Scholar 

  41. S. E. B. Maïga, S. J. Palm, C. T. Nguyen, G. Roy and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat. Fluid. Flow., 26 (2005) 530–546.

    Article  Google Scholar 

  42. J. Kline and F. A. McClintock, Describing uncertainties in single sample experiments, Mech. Eng., 75 (1953) 3–8.

    Google Scholar 

  43. R. K. Shah, Thermal entry length solutions for the circular tube and parallel plates, Proc. of Third National Heat. Mass. Transfer, Bombay (1975).

    Google Scholar 

  44. R. K. Shah and A. L. London, Laminar flow forced convection in ducts, New York: Supplement 1 to Advances in heat transfer, Academic Press (1978).

    Google Scholar 

  45. R. K. Shah and M. S. Bhatti, Laminar convective heat transfer in ducts, in: S. Kakaç, R. K. Shah and W. Aung (Eds), Handbook of single-phase convective heat transfer, Wiley, New York (1987).

    Google Scholar 

  46. G. P. Celata, M. Cumo and G. Zummo, Thermal-hydraulic characteristics of single phase flow in capillary pipes, Exp. Therm. Fluids Sci., 28 (2004) 87–95.

    Article  Google Scholar 

  47. Z. Y. Guo and Z. X. Li, Size effect on single-phase channel flow and heat transfer at microscale, Int. J. Heat Fluid Flow, 24 (2003) 284–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminreza Noghrehabadi.

Additional information

Recommended by Associate Editor Dae Hee Lee

Aminreza Noghrehabadi is an associate professor in Mechanical Engineering at Shahid Chamran University of Ahvaz. His research interests are on the field of nanofluid heat and mass transfer, NEMS actuators and heat transfer in porous media.

Rashid Pourrajab is graduate M.S. in Mechanical Engineering at Shahid Chamran University of Ahvaz. His research has been mainly focused on the development of new heat transfer enhancement fluid called nanofluids. He is working on modeling, production and experiments with nanofluids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noghrehabadi, A., Pourrajab, R. Experimental investigation of forced convective heat transfer enhancement of γ-Al2O3/water nanofluid in a tube. J Mech Sci Technol 30, 943–952 (2016). https://doi.org/10.1007/s12206-016-0148-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0148-z

Keywords

Navigation