Skip to main content
Log in

The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology (Wiley-Interscience Hoboken, 2008).

  2. W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Appl. Phys. Lett. 96, 213109 (2010).

    Article  ADS  Google Scholar 

  3. S.U.S. Choi, J. Heat Transfer 131, 033106 (2009).

    Article  Google Scholar 

  4. X.Q. Wang, A.S. Mujumdar, Int. J. Thermal Sci. 46, 1 (2007).

    Article  MATH  Google Scholar 

  5. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinsky, Annu. Rev. Mater. Res. 34, 219 (2004).

    Article  ADS  Google Scholar 

  6. M. Chandrasekar, S. Suresh, Heat Transfer Engin. 30, 1136 (2009).

    Article  ADS  Google Scholar 

  7. V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, Thermophys. Aeromech. 17, 1 (2010).

    Article  ADS  Google Scholar 

  8. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  9. W.H. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Heat Transfer Engin. 29, 432 (2008).

    Article  ADS  Google Scholar 

  10. V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, Thermophy. Aeromech. 17, 157 (2010).

    Article  ADS  Google Scholar 

  11. Y. Ding, H. Alias, D. Wen, R. Williams, Int. J. Heat Mass Transfer 49, 240 (2006).

    Article  Google Scholar 

  12. U. Rea, T. McKrell, L. Hu, J. Buongiorno, Int. J. Heat Mass Transfer 52, 2042 (2009).

    Article  Google Scholar 

  13. W. Williams, J. Buongiorno, L.W. Hu, J. Heat Transfer 130, 042412 (2008).

    Article  Google Scholar 

  14. A.T. Utomo, E.B. Haghighi, A.I.T. Zavareh, M. Ghanbarpourgeravi, H. Poth, R. Khodabandeh, B. Palm, A.W. Pacek, Int. J. Heat Mass Transfer 69, 77 (2014).

    Article  Google Scholar 

  15. A.V. Minakov, A.S. Lobasov, M.I. Pryazhnikov, D.V. Guzei, Defect Diffusion Forum 348, 123 (2014).

    Article  Google Scholar 

  16. D. V. Guzei, A. V. Minakov, V. Ya. Rudyak, A. A. Dekterev, Tech. Phys. Lett. 40, 203 (2014).

    Article  ADS  Google Scholar 

  17. D. Wen, Y. Ding, Int. J. Heat Mass Transfer 47, 5181 (2004).

    Article  Google Scholar 

  18. K.S. Hwang, S.P. Jang, S.U.S. Choi, Int. J. Heat Mass Transfer 52, 193 (2009).

    Article  MATH  Google Scholar 

  19. Y. Xuan, Q. Li, ASME J. Heat Transfer 125, 151 (2003).

    Article  Google Scholar 

  20. V. Bianco, O. Manca, S. Nardini, Adv. Mech. Engin. 2010, 976254 (2010).

    Article  Google Scholar 

  21. D. Wen, Y. Ding, Microfluid Nanofluid 1, 183 (2005).

    Article  Google Scholar 

  22. D. Wen, L. Zhang, Y. He, Heat Mass Transfer 45, 1061 (2009).

    Article  ADS  Google Scholar 

  23. C.H. Sohn, K.D. Kihm, J. Korean Phys. Soc. 55, 2200 (2009).

    Article  ADS  Google Scholar 

  24. Y.S. Na, K.D. Kihm, J.S. Lee, Appl. Phys. Lett. 101, 083111 (2012).

    Article  ADS  Google Scholar 

  25. Y.S. Na, K.D. Kihm, J.S. Lee, Int. J. Heat Mass Transfer 55, 7933 (2012).

    Article  Google Scholar 

  26. M. Bahiraei, S.M. Hosseinalipour, Thermochim. Acta 574, 47 (2013).

    Article  Google Scholar 

  27. M.M. Heyhat, F. Kowsary, ASME J. Heat Transfer 132, 062401 (2010).

    Article  Google Scholar 

  28. I.I. Ryzhkov, Int. J. Heat Mass Transfer 66, 461 (2013).

    Article  Google Scholar 

  29. P.S. Epstein, Z. Physik. 54, 537 (1929).

    Article  ADS  Google Scholar 

  30. G.S. McNab, A. Meisen, J. Colloid Interface Sci. 44, 339 (1973).

    Article  Google Scholar 

  31. R. Piazza, A. Parola, J. Phys. Condens. Matter 20, 153102 (2008).

    Article  ADS  Google Scholar 

  32. A. Würger, Rep. Prog. Phys. 73, 126601 (2010).

    Article  ADS  Google Scholar 

  33. G. Galliero, J. Chem. Phys. 128, 064505 (2008).

    Article  ADS  Google Scholar 

  34. I.I. Ryzhkov, A.V. Minakov, Int. J. Heat Mass Transfer 77, 956 (2014).

    Article  Google Scholar 

  35. NIST Chemistry Webbook (2011). .

  36. R. Morrell, Handbook of properties of technical and egineering ceramics, Part 2. Data reviews. Section 1. High-alumina ceramics (London, 1987).

  37. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edition (John Wiley & Sons, New York, 1976).

  38. A. Einstein, Ann. Phys. 19, 289 (1906).

    Article  MATH  Google Scholar 

  39. S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E. 19, 59 (2006).

    Article  Google Scholar 

  40. M. Braibanti, D. Viglio, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008).

    Article  ADS  Google Scholar 

  41. J.C. Giddings, P.M. Shinudu, S.N. Semenov, J. Colloid Interface Sci. 176, 454 (1995).

    Article  Google Scholar 

  42. J. Lenglet, A. Bourdon, J.C. Bacri, G. Demouchy, Phys. Rev. E. 65, 031408 (2002).

    Article  ADS  Google Scholar 

  43. S. Alves, F.L.S. Cuppo, A. Bourdon, A.M.F. Neto, J. Opt. Soc. Am. B. 23, 2328 (2006).

    Article  ADS  Google Scholar 

  44. J.H. Lienhard, J.H. Lienhard IV, A heat transfer textbook (Dover publications, New York, 2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofya V. Kozlova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, S.V., Ryzhkov, I.I. The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes. Eur. Phys. J. E 37, 87 (2014). https://doi.org/10.1140/epje/i2014-14087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14087-0

Keywords

Navigation