Skip to main content
Log in

Preparation of Nanosized Powder Aluminum, Magnesium, and Zinc Oxides

  • NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A method for the preparation of nanosized powder metal oxides (Al2O3, MgO, and ZnO) has been developed by the sequential heat treatment of saturated solutions of salts of these metals and sucrose at a temperature of 350°C and then 800°C. The application fields and physicochemical and technological properties of the materials synthesized are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zamani, F. and Taghvaei, A.H., Synthesis of nanocrystalline Mg0.6Cd0.4Fe2O4 ferrite by glycine-nitrate auto-combustion method and investigation of its microstructure and magnetic properties, Ceram. Int., 2017, vol. 43, no. 18, pp. 16693–16702. https://doi.org/10.1016/j.ceramint.2017.09.060

    Article  CAS  Google Scholar 

  2. Choi, J., Yoo, K.S., Kim, S.D., Park, H.K., Nam, C.W., and Kim, J., Synthesis of mesoporous spherical γ‑Al2O3 particles with varying porosity by spray pyrolysis of commercial boehmite, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2017, vol. 56, pp. 151–156. https://doi.org/10.1016/j.jiec.2017.07.007

  3. El-Amir, A.A.M., Ewais, E.M.M., Abdel-Aziem, A.R., Ahmed, A., and El-Anadouli, B.E.H., Nano-alumina powders/ceramics derived from aluminum foil waste at low temperature for various industrial applications, J. Environ. Manage., 2016, vol. 183, pp. 121–125. https://doi.org/10.1016/j.jenvman.2016.08.072

    Article  CAS  PubMed  Google Scholar 

  4. Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., Belan, V.N., Semenov, E.A., and Luchkov, I.V., The thermodynamic properties and role of water contained in dispersed oxides in precursor-boehmite conversion, based on the example of aluminum hydroxide and oxide under hydrothermal conditions in different environments, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 4, pp. 592–597.

    Article  CAS  Google Scholar 

  5. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Kozerozhets, I.V., Hydrargillite → boehmite transformation, Inorg. Mater., 2010, vol. 46, no. 7, pp. 747–753. https://doi.org/10.1134/S0020168510070113

    Article  CAS  Google Scholar 

  6. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Mosk. Gos. Univ., 2003.

    Google Scholar 

  7. Varadharajan, R. and Baskaran, D., Diverse nano dimension of SDS, PEG and CTAB roofed MgO nano powder synthesized by co-precipitation method, J. Nanostruct., 2017, vol. 7, no. 3, pp. 189–193. https://doi.org/10.22052/jns.2017.03.004

    Article  CAS  Google Scholar 

  8. Yoo, D.J., Lim, D.H., Kang, Y., Lee, C.G., and Kang, G.M., Optical properties of nano-structured ZnO: Sn powders prepared in a micro drop fluidized reactor, J. Chem. Eng. Jpn., 2017, vol. 50, no. 1, pp. 21–25. https://doi.org/10.1252/jcej.16we041

    Article  CAS  Google Scholar 

  9. Hadis, M., Zinc Oxide: Fundamentals, Materials and Device Technology, Weinheim: Wiley-VCH, 2009.

    Google Scholar 

  10. Kalashnikov, S.V., Particle size differentiation of nanostructured objects by an acoustic method and in a centrifugal force field, Cand. Sci. (Eng.) Dissertation, Ulan-Ude, 2016.

  11. Braunovich, M., Konchits, V., and Myshkin, N., Electrical Contacts: Fundamentals, Applications and Technology, London: CRC, 2006.

    Book  Google Scholar 

  12. Zemtsova, E.G., Monin, A.V., Smirnov, V.M., Semenov, B.N., and Morozov, N.F., Preparation and mechanical properties of alumina ceramics based on aluminum oxide micro- and nanoparticles, Fiz. Mezomekh., 2014, vol. 17, no. 6, pp. 53–58.

    Google Scholar 

  13. Kalashnikov, S.V., Romanov, N.A., Nomoev, A.V., and Dzidziguri, E.L., Particle size differentiation in centrifugal force field, Nanotechnol. Russ., 2014, vol. 9, nos. 9–10, pp. 549–554. https://doi.org/10.1134/S199507801405005X

    Article  CAS  Google Scholar 

  14. Khiterkheeva, N.S., Nomoev, A.V., Bardakhanov, S.P., and Uladaeva, S.S., RF Patent 250896, 2014.

  15. Borisov, Yu.V., Zubkov, V.D., Shutov, V.A., and Yusupov, V.F., RF Patent 2411083, 2011.

  16. Tsao, T.M., Wang, M.K., and Huang, P.M., Automated ultrafiltration device for efficient collection of environmental nanoparticles from aqueous suspensions, Soil Sci. Soc. Am. J., 2009, vol. 73, pp. 1808–1816.

    Article  CAS  Google Scholar 

  17. Galyshev, S.N., Bazhin, P.M., Stolin, A.M., Musin, F.F., Solov’ev, P.V., and Astanin, V.V., High-temperature firing of composite based on the MAX-phase of the Ti–Al–C system, Refract. Ind. Ceram., 2018, vol. 58, no. 5, pp. 557–561.

    Article  CAS  Google Scholar 

  18. Bersh, A.V., Belyakov, A.V., Mazalov, D.Yu., Solov’ev, S.A., Sudnik, L.V., and Fedotov, A.V., Formation and sintering of boehmite and aluminum oxide nanopowders, Refract. Ind. Ceram., 2017, vol. 57, no. 6, pp. 655–660.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed in the framework of the State Assignment to the Kurnakov Institute, no. 0088-2014-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Panasyuk.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V. et al. Preparation of Nanosized Powder Aluminum, Magnesium, and Zinc Oxides. Theor Found Chem Eng 53, 855–859 (2019). https://doi.org/10.1134/S004057951905018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951905018X

Keywords:

Navigation