Skip to main content
Log in

Hydrogen transport through a membrane module based on a palladium foil

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experimental data are presented and a mathematical model is suggested for hydrogen transport through a palladium membrane module. The basic working element of the module is a piece of palladium foil secured between two pieces of fine-mesh metallic gauze to prevent the rupture of the foil because of the difference between the outer pressures applied. It is demonstrated that, under the experimental conditions considered, the effect of the supporting metallic gauzes can be neglected. An expression is reported for the hydrogen flux through the foil as a function of the foil thickness and applied pressures. In the particular case of fairly high pressures, the hydrogen flux obeys the well-known Sieverts law, being limited by proton diffusion in the palladium lattice. At low pressures, the hydrogen flux is limited by adsorption-desorption processes on the foil surface. The preexponential factor in the Sieverts law for pure palladium membranes has been refined on the basis of experimental data for the membrane module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkl, J. and Alefeld, G., Hydrogen Diffusion in Metals, New York: Academic, 1975.

    Google Scholar 

  2. Dittmeyer, R., Hollein, V., and Daub, K., Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium, J. Mol. Catal. A: Chem., 2001, vol. 173, p. 135.

    Article  CAS  Google Scholar 

  3. Hughes, R., Composite palladium membranes for catalytic membrane reactor, Membr. Technol., 2001, vol. 131, p. 9.

    Article  Google Scholar 

  4. Didenko, L.P., Voronetsky, M.S., Sementsova, L.A., Barelko, V.V., Bikov, L.A., Ivanyuk, A.G., Chepelenko, V.N., Brizitski, O.F., and Terent’ev, V.Ya., Technical characteristics of the hydrogen-filtering module on a base of the palladium foil, Int. Sci. J. Altern. Energy Ecol., 2010, no. 10, p. 154.

    Google Scholar 

  5. Collins, J.P., Sehgal, R., Schwartz, R.W., Brinker, C.J., Ward, T.L., Hagen, G.P., and Udovich, C.A., Catalytic dehydrogenation of propane in hydrogen permselective membrane reactors, Ind. Eng. Chem. Res., 1996, vol. 35, p. 4398.

    Article  CAS  Google Scholar 

  6. Yilidirin, Y., Gobina, E., and Hughes, R., Propane dehydrogenation over a Cr2O3/Al2O3 catalyst, J. Membr. Sci., 1997, vol. 135, p. 107.

    Article  Google Scholar 

  7. Quicker, P., Höllein, V., and Dittmeyer, R., Recent advances in gas separation by microporous ceramic membranes, Catal. Today, 2000, vol. 56, p. 22.

    Article  Google Scholar 

  8. Babak, V.N., Babak, T.B., Zakiev, S.E., and Kholpanov, L.P., Theoretical study of hydrocarbon dehydrogenation at high temperatures, Theor. Found. Chem. Eng. 2009, vol. 43, p. 74.

    Article  CAS  Google Scholar 

  9. Xomeritakis, G. and Zin, Y.S., Fabrication of thin metallic membranes by HOCVS and sputtering, J. Membr. Sci., 1997, vol. 133, p. 217.

    Article  CAS  Google Scholar 

  10. Roa, F., Way, J.D., McCormick, R.L., and Paglieri, S.N., Preparation and characterization of Pd-Cu composite membranes for hydrogen separation, Chem. Eng. J., 2003, vol. 93, p. 11.

    Article  CAS  Google Scholar 

  11. Hien Duy Tong, Gielens, F.C., Gardeniers, J.G.E., Jansen, H.V., Berenschot, J.W., de Boer, M.J., de Boer, J.H., van Rijn, C.J.M., and Elwenspoek, M.C., Microsieve supporting palladium silver alloy membrane and application to hydrogen separation, J. Microelectromech. Syst., 2005, vol. 14, no. 1, p. 113.

    Article  CAS  Google Scholar 

  12. Kikoin, A.K. and Kikoin, I.K., Molekulyarnaya fizika (Molecular Physics), Moscow: Nauka, 1976.

    Google Scholar 

  13. Schlichting, G., Boundary-Layer Theory, New York: McGraw-Hill, 1979.

    Google Scholar 

  14. Reid, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  15. Kikuchi, E. and Uemiya, S., Preparation of supported thin palladium-silver alloy membranes and their characteristics for hydrogen separation, Gas Sep. Purif., 1991, vol. 5, p. 261.

    Article  CAS  Google Scholar 

  16. Brenner, J.R., Bhagat, G., and Vasa, P., Hydrogen purification with palladium and palladium alloys on porous stainless steel membranes, Int. J. Oil, Gas Coal Technol., 2008, vol. 1, p. 109.

    Article  CAS  Google Scholar 

  17. Yeung, K.L., Christiansen, S.C., and Varma, A., Palladium composite membranes by electroless plating technique: relationships between plating kinetics, film microstructure and membrane performance, J. Membr. Sci., 1999, vol. 159, p. 107.

    Article  CAS  Google Scholar 

  18. Shu, J., Grandjean, B.P.A., Kaliaguine, S., Giroir-Fendler, A., and Dalmon, J.A., Hysteresis in hydrogen permeation through palladium membranes, J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 2745.

    Article  CAS  Google Scholar 

  19. Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation, Ind. Eng. Chem. Res., 1994, vol. 33, p. 616.

    Article  CAS  Google Scholar 

  20. Uemiya, S., Sato, N., and Kikuchi, E., The water-gas shift reaction assisted by a palladium membrane reactor, Ind. Eng. Chem. Res., 1991, vol. 67, p. 585.

    Article  Google Scholar 

  21. Ma, Y.H., Mardilovich, I.P., and Engwall, E.E., Thin composite palladium and palladium alloy membranes for hydrogen separation, Ann. N. Y. Acad. Sci., 2003, vol. 984, p. 346.

    Article  CAS  Google Scholar 

  22. Lin, Y.H., Lee, G.L., and Rei, H.H., An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor, Catal. Today, 1998, vol. 44, p. 343.

    Article  CAS  Google Scholar 

  23. Tosti, S., Bettinali, L., and Violante, V., Rolled thin Pd and Pd-Ag membranes for hydrogen separation and recovery, Int. J. Hydrogen Energy, 2000, vol. 25, p. 319.

    Article  CAS  Google Scholar 

  24. Iarosch, K. and Lasa, H., Permeability and selectivity and testing of hydrogen diffusion membranes suitable for use in steam reforming, Ind. Eng. Chem. Res., 2001, vol. 40, p. 5391.

    Article  Google Scholar 

  25. Adamson, A.W. and Gast, A.P., Physical Chemistry of Surfaces, New York: Wiley, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Babak.

Additional information

Original Russian Text © V.N. Babak, L.P. Didenko, S.E. Zakiev, 2013, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2013, Vol. 47, No. 6, pp. 656–667.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babak, V.N., Didenko, L.P. & Zakiev, S.E. Hydrogen transport through a membrane module based on a palladium foil. Theor Found Chem Eng 47, 719–729 (2013). https://doi.org/10.1134/S004057951306002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951306002X

Keywords

Navigation