Skip to main content
Log in

Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a liquid layer of a finite depth described by Euler’s equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. Korobkin, E. I. Părău, and J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity,” Philos. Trans. R. Soc. London Ser. A, 369, 2803–2812 (2011).

    ADS  MathSciNet  Google Scholar 

  2. T. Khabakhpasheva, K. Shishmarev, and A. Korobkin, “Large-time response of ice cover to a load moving along a frozen channel,” Appl. Ocean Res., 86, 154–156 (2019).

    Article  Google Scholar 

  3. I. V. Sturova, “Radiation of waves by a cylinder submerged in water with ice floe or polynya,” J. Fluid Mech., 784, 373–395 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. I. V. Sturova, “Motion of an external load over a semi-infinite ice sheet in the subcritical regime,” Fluid Dyn., 53, 49–58 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. A. Savin and S. Savin, “Waves generated on an ice cover by a source pulsating in fluid,” Fluid Dyn., 48, 303–309 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. T. Il’ichev, A. A. Savin, and A. S. Savin, “Formation of a wave on an ice-sheet above the dipole, moving in a fluid,” Dokl. Phys., 57, 202–205 (2012).

    Article  ADS  Google Scholar 

  7. D. Q. Lu and S. Q. Dai, “Flexural- and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth,” Internat. J. Eng. Sci., 46, 1183–1193 (2008).

    Article  MathSciNet  Google Scholar 

  8. V. A. Square, “Past, present and impedent hydroelastic challenges in the polar and subpolar seas,” Phil. Trans. Roy. Soc. London Ser. A, 369, 2813–2831 (2011).

    ADS  Google Scholar 

  9. A. V. Pogorelova, V. M. Kozin, and A. A. Matyushina, “Stress-strain state of ice cover during aircraft takeoff and landing,” J. Appl. Mech. Tech. Phys., 56, 920–926 (2015).

    Article  ADS  Google Scholar 

  10. L. A. Tkacheva, “Action of a periodic load on an elastic floating plate,” Fluid Dyn., 40, 282–296 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  11. L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. High order series solution,” J. Fluid Mech., 169, 409–428 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  12. L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution,” J. Fluid Mech., 188, 491–508 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Iooss and M. Adelmeyer, Topics in Bifurcation Theory and Applications (Advanced Series in Nonlinear Dynamics, Vol. 3), World Sci., Singapore (1998).

    Google Scholar 

  14. K. Kirchgässner, “Wave-solutions of reversible systems and applications,” J. Differ. Equ., 45, 113–127 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications,” Math. Methods Appl. Sci., 10, 51–66 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Il’ichev, “Solitary waves in media with dispersion and dissipation (a review),” Fluid Dyn., 35, 157–176 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Părău and F. Dias, “Nonlinear effects in the response of a floating ice plate to a moving load,” J. Fluid Mech., 460, 281–305 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. T. Il’ichev, A. S. Savin, and A. Yu. Shashkov, “Trajectories of liquid particles under an ice cover in the field of a solitary flexural gravity wave,” Radiophysics and Quantum Electronics (2024), to appear.

    Google Scholar 

  19. A. T. Il’ichev and V. Ja. Tomashpolskii, “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress,” Wave Motion, 86, 11–20 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  20. P. I. Plotnikov and J. F. Toland, “Modelling nonlinear hydroelastic waves,” Phil. Trans. R. Soc. London Ser. A, 369, 2942–2956 (2011).

    ADS  MathSciNet  Google Scholar 

  21. O. M. Phillips, The Dynamics of the Upper Ocean, Cambridge Univ. Press, Cambridge (1977).

    Google Scholar 

  22. A. S. Monin, Theoretical Geophysical Fluid Dynamics (Environmental Fluid Mechanics, Vol. 6), Springer, Dordrecht (1990).

    Book  Google Scholar 

  23. G. Stokes, “On the theory of oscillatory waves,” Trans. Cambridge Phil. Soc., 8, 441–455 (1847).

    Google Scholar 

  24. A. A. Ochirov, Study of Formation Laws for the Mass Transfer Initiated by Fluid Wave Motion (Candidate Sci. (Phys.–Math.) Dissertation), P.G. Demidov Yaroslavl State University, Yaroslavl (2020).

    Google Scholar 

  25. A. Müller and R. Ettema, “Dynamic response of an icebreaker hull to ice breaking,” in: Proceedings of the 7th International Symposium on Ice, Vol. II (Hamburg, Germany, August 27–31, 1984), IAHR, Hamburg (1984), pp. 287–296.

    Google Scholar 

  26. A. T. Il’ichev and V. Ya. Tomashpolskii, “Soliton-like structures on a liquid surface under an ice cover,” Theoret. and Math. Phys., 182, 231–245 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. T. Il’ichev, “Soliton-like structures on a water–ice interface,” Russian Math. Surveys, 70, 1051–1103 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite- Dimensional Dynamical Systems, Springer, London (2011).

    Book  Google Scholar 

  29. A. T. Il’ichev, Solitary Waves in Models of Fluid Mechanics [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  30. G. Iooss and M.-C. Pérouème, “Perturbed homoclinic solutions in reversible \(1\,{:}\,1\) resonance vector fields,” J. Differ. Equ., 102, 62–88 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Dias and G. Iooss, “Capillary-gravity solitary waves with damped oscillations,” Phys. D, 65, 300–423 (1993).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research in Sections 1, 2, and 4 was carried out by A. T. Il’ichev, who also participated in the research in Section 3; the research in Section 3 was carried out by A. S. Savin and A. Yu. Shashkov. The work of A. T. Il’ichev was supported by the Russian Science Foundation under grant No. 19-71-30012, https://rscf.ru/en/project/23-71-33002/, at the Steklov Mathematical Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Il’ichev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 586–600 https://doi.org/10.4213/tmf10585.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.T., Savin, A.S. & Shashkov, A.Y. Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover. Theor Math Phys 218, 503–514 (2024). https://doi.org/10.1134/S0040577924030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924030097

Keywords

Navigation