Skip to main content
Log in

Solitary wave packets beneath a compressed ice cover

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A family of plane solitary wave packets of a small (but finite) amplitude on the surface of an ideal incompressible fluid of finite depth beneath an ice cover is described. The solitary wave trains correspond to solutions of the two-dimensional system of Euler’s equations of an ideal incompressible fluid of the type of a traveling wave which decreases at infinity and has identical phase and group velocities. The ice cover is simulated by an elastic Kirchhoff-Love plate freely floating on the fluid surface in the compressed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Il’ichev, Solitary Waves in Fluid Dynamic Models (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  2. G. Iooss and K. Kirchgässner, “Bifurcation d’Ondes Solitaires en Présence d’une Faible Superficiele,” C. R. Acad. Sci. Paris, Ser. 1 311, 265–268 (1990).

    MATH  Google Scholar 

  3. F. Dias and G. Iooss, “Capillary-Gravity Solitary Waves with Damped Oscillations,” Physica D 65, 399–323 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. P. Guyenne and E. I. Parau, “Finite-Depth Effects on Solitary Waves in a Floating Ice-Sheet,” J. Fluids and Structures 49, 242–262 (2014).

    Article  ADS  Google Scholar 

  5. K. Kirchgässner, “Wave Solutions of Reversible Systems and Applications,” J. Diff. Eqns. 45, 113–127 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Mielke, “Reduction of Quasilinear Elliptic Equations in Cylindrical Domains with Applications,” Math. Meth. Appl. Sci. 10, 501–566 (1988).

    Article  MathSciNet  Google Scholar 

  7. G. Iooss and M. C. Perouéme, “Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector Fields,” J. Diff. Eqns. 102, 62–88 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. G. Iooss and M. Adelmeyer, Topics in Bifurcation Theory and Applications (2nd edition, World Scientific, Singapore, 1998).

    MATH  Google Scholar 

  9. M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, Berlin, Heidelberg, 2012).

    MATH  Google Scholar 

  10. V. F. Pliss, “Reduction Principle in the Theory of Stability of Motion,” Dokl. Akad. Nauk SSSR 15, 1044–1046 (1964).

    MathSciNet  MATH  Google Scholar 

  11. A. Vanderbauwhede and G. Iooss, “Center Manifold Theory in Infinite Dimensions,” Dynamics Reported 1, 125–163 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Elphick, M. E. Tirapegui, P. Brachet, P. Coullet, and G. Iooss, “A Simple Global Characterization of Normal Forms of Singular Vector Fields,” Physica D 29, 95–127 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Müller and R. Ettema, “Dynamic Response of an Icebreaker Hull to Ice Breaking,” in Proc. IAHR Ice Symp., Hamburg, 1984, Vol. 2, 287–296 (1984).

    Google Scholar 

  14. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, Cambridge, 1927).

    MATH  Google Scholar 

  15. L. K. Forbes, “Surface Waves of Large Amplitude beneath an Elastic Sheet. High Order Series Solution,” J. Fluid Mech. 169, 409–428 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D. E. Kheisin, Ice Cover Dynamics (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  17. V. A. Squire, R. J. Hosking, A. D. Kerr, and P. G. Langhorne, Moving Loads on Ice Plates (Kluver, Acad. Publ., Dordrecht, 1996).

    Book  Google Scholar 

  18. G. Iooss and K. Kirchgässner, “Water Waves for Small Surface Tension: an Approach via Normal Form,” Proc. Roy. Soc. Edinburgh Ser. A. 122, 267–299 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kato, Perturbation Theory of Linear Operators (Mir, Moscow, 1972).

    Google Scholar 

  20. A. T. Il’ichev and V. Ya. Tomashpol’skii, “Soliton-Like Structures on the Fluid Surface beneath an Ice Cover,” Teor. Mat. Fiz. 182, 267–283 (2015).

    MathSciNet  Google Scholar 

  21. A. T. Il’ichev, “Solitary Wave Packets and Dark Solitons on the Water-Ice Interface,” Tr. Matem. Inst. RAN im. V. A. Steklova 289, 163–177 (2015).

    Google Scholar 

  22. A. T. Il’ichev, “Soliton-Like Structures on the Water-Ice Interface,” Usp. Mat. Nauk 70:6 426, 85–138 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Il’ichev.

Additional information

Original Russian Text © A.T. Il’ichev, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 3, pp. 32–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.T. Solitary wave packets beneath a compressed ice cover. Fluid Dyn 51, 327–337 (2016). https://doi.org/10.1134/S0015462816030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816030042

Keywords

Navigation