Skip to main content
Log in

Digital representation of continuous observables in quantum mechanics

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

To simulate quantum systems on classical or quantum computers, the continuous observables (e.g., coordinate and momentum or energy and time) must be reduced to discrete ones. In this paper, we consider the continuous observables represented in the positional systems as power series in the radix multiplied over the summands (“digits”), which turn out to be Hermitian operators with discrete spectrum. We investigate the obtained quantum mechanical operators of digits, the commutation relations between them, and the effects of the choice of a numeral system on lattices and representations. Renormalizations of diverging sums naturally occur in constructing the digital representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Any function of an observable can be properly defined in the representation in which the operator of the observable is diagonal. For instance, the operator \(\theta(\hat{x})\) is frequently used. This allows defining \(\hat{x}_s\) in the coordinate representation and \(\hat{p}_r\) in the momentum representation without resorting to additional procedures.

References

  1. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, Report of Post-Quantum Cryptography (NIST Internal Report 8105), National Institute of Standards and Technology, Gaithersburg, MD (2016).

  2. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett., 85, 441-444 (2000).

    Article  ADS  Google Scholar 

  3. R. P. Feynman, “Simulation physics with computers,” Internat. J. Theor. Phys., 21, 467–488 (1982).

    Article  ADS  Google Scholar 

  4. Google AI Quantum and Collaborators, “Hartree–Fock on a superconducting qubit quantum computer,” Science, 369, 1084–1089 (2020).

    Article  MathSciNet  Google Scholar 

  5. Y. Ding, X. Chen, L. Lamata, E. Solano, and M. Sanz, “Implementation of a hybrid classical- quantum annealing algorithm for logistic network design,” arXiv: 1906.10074.

  6. M. G. Ivanov, “Binary representation of coordinate and momentum in quantum mechanics,” Theoret. and Math. Phys., 196, 1002–1017 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  7. M. G. Ivanov and A. Yu. Polushkin, “Ternary and binary representation of coordinate and momentum in quantum mechanics,” AIP Conf. Proc., 2362, 040002, 22 pp. (2021).

    Article  Google Scholar 

  8. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York (1950).

    Google Scholar 

  9. J. Schwinger, “Unitary operator bases,” Proc. Nat. Acad. Sci. USA, 46, 570–579 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Katriel, “A nonlinear Bogoliubov transformation,” Phys. Lett. A, 307, 1–7 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  11. I. Arraut and C. Segovia, “A \(q\)-deformation of the Bogoliubov transformations,” Phys. Lett. A, 382, 464–466 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. G. Ivanov, V. A. Dudchenko, and V. V. Naumov, “Number-theory renormalization of the vacuum energy,” p-Adic Num. Ultrametr. Anal. Appl., 15, 284–311 (2023).

    Article  MathSciNet  Google Scholar 

  13. V. Vladimirov, I. Volovic, and E. Zelenov, \(p\)-Adic analysis and mathematical physics (Series On Soviet And East European Mathematics), World Sci. (1994).

    Book  Google Scholar 

  14. W. Ehrenberg and R. E. Siday, “The refractive index in electron optics and the principles of dynamics,” Proc. Phys. Soc. B, 62, 8–21 (1949).

    Article  ADS  Google Scholar 

  15. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in quantum theory,” Phys. Rev., 115, 485–491 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. G. Ivanov, “Formulation of quantum mechanics with dynamical time,” Proc. Steklov Inst. Math., 285, 145–156 (2014).

    Article  MathSciNet  Google Scholar 

  17. M. G. Ivanov, How to Understand Quantum Mechanics [in Russian], R&C Dynamics, Moscow–Izevsk (2015).

    Google Scholar 

  18. M. G. Ivanov, “On uniqueness of the quantum measurement theory for exact measurements with discrete spectra,” Proc. MIPT, 8, 170–178 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors thank the participants of the Conference Phystech-Quant 2020 (Moscow Institute of Physics and Technology, 2020), of the section of theoretical physics of the 62th, 63th, and 64th MIPT Science Conferences (2019, 2020, and 2021 respectively), the seminar of the Department of Mathematical Physics (Steklov Mathematical Institute), and the seminar of the Laboratory of Infinite-Dimensional Analysis and Mathematical Physics (Moscow State University). The authors also thank I. V. Volovich, Z. V. Khaidukov, V. A. Dudchenko, V. V. Naumov, N. N. Shamarov, V. Zh. Sakbayev, and other colleagues for the useful discussion. The authors thank the referee for improving the text of the paper.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 537–558 https://doi.org/10.4213/tmf10536.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Rectangular function on a lattice

We consider a periodic rectangular function \(c(\alpha)\), \(\alpha\in\mathbb{Z}(T)\) such that

$$ c(\alpha) = \begin{cases} \mathscr{A}, & L\leqslant \alpha \leqslant R, \\ 0 & \text{in other cases}, \end{cases} \qquad\alpha\in \mathbb{Z}(T).$$
(A.1)
We use the orthonormal basis \(E_k(\alpha)=e^{-2\pi i\alpha k/T}/\sqrt T\), \(k\in\mathbb{Z}(T)\):
$$\begin{aligned} \, \tilde c(0)&=\langle E_0|c\rangle=\mathscr{A}\frac{R-L+1}{\sqrt T}, \end{aligned}$$
(A.2)
$$\begin{aligned} \, \tilde{c}(k)&=\langle E_k|c\rangle = \frac{1}{\sqrt T} \sum_{\alpha = L}^{R} \mathscr{A} e^{2 \pi i k \alpha/T} = {} \nonumber \\ &=\frac{\mathscr{A}}{\sqrt T} e^{2 \pi i k L/T}\biggl(\frac{1 - e^{2 \pi i k (R - L + 1)/T}} {1 - e^{2 \pi i k L/T}} \biggr), \quad k\not=0, \end{aligned}$$
(A.3)
$$\begin{aligned} \, c(\alpha) &=\sum_{k \in \mathbb{Z}_{T}}\tilde c(k)\cdot E_k(\alpha) ={} \nonumber \\ &= \mathscr{A}\frac{R-L+1}{T}+\sum_{k=1}^{T-1} \frac{\mathscr{A}}{T} e^{2 \pi i k L/T}\biggl(\frac{1 - e^{2 \pi i k (R - L + 1)/T}}{1 - e^{2 \pi i k L/T}}\biggr) e^{- 2 \pi i\alpha k/T}. \end{aligned}$$
(A.4)

\(q\)-nary system on the lattice

We now consider one (\(r\)th) digit of a \(q\)-nary system with digits \(\{0,1, \dots, q\}\). It can be represented as a sequence of \(q\) rectangular functions \(c_{j}\), for which we can write

$$L_j = q^{n_{+}+r} \cdot (j - 1), \quad R_j = (q^{n_{+}+r} \cdot j) - 1, \quad \mathscr{A}_j = j - 1, \quad T_j=q^{n_{+}+r+1}, \quad j \in \{1, \dots, q\}.$$
Hence, we obtain
$$ p_r=\mathbf{d}(r,p)= \sum_{j = 1}^{q}c_{j}\biggl(\frac{p}{\Delta p}\biggr).$$
(A.5)
Using formula (A.4), we obtain the following expression for the momentum digit decomposition:
$$ p_r = \frac{q - 1}{2} - \Delta p q^{-r} \sum_{D \in \mathbb{Z}_{q^r/\Delta p}} \sum_{\sigma = 1}^{q - 1}\frac{e^{-2\pi i Ap}}{1 - e^{2\pi i \Delta p A}}, \qquad A = q^{-r}\biggl(D + \frac{\sigma}{q}\biggr).$$
(A.6)
Similarly, for the coordinate digit, we have
$$ x_s = \frac{q - 1}{2} - \Delta x q^{-s} \sum_{D \in \mathbb{Z}_{q^s/\Delta x}} \sum_{\sigma = 1}^{q - 1}\frac{e^{2\pi i Bx}}{1 - e^{2\pi i \Delta x B}}, \qquad B = q^{-s}\biggl(D + \frac{\sigma}{q}\biggr).$$
(A.7)

Appendix B

We consider the matrices of momentum digits and operators in the cases where they are compact enough to be put on paper.

Everywhere in this section, \(\Delta x = 1\), \(x \in \mathbb{Z}_{N} \in \{0,1, \dots,N - 1 \}\), the coordinates and momenta are labeled by ternary numbers, which are marked with the subscript 3, and \(\Delta p = 3^{-n} = 1/N\).

The case \(n = 1\) and \(N = 3^1 = 3\). Symmetric system

In this case, we have

$$\begin{aligned} \, &\hat{x} = \hat{x}_0 = \begin{pmatrix} +1&0&0 \\ 0&0&0 \\ 0&0&-1 \end{pmatrix} = \hat{s}_z, \\ &\hat p_{-1} =\frac{1}{\sqrt{3}} \begin{pmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{pmatrix}= \frac{1}{\sqrt{3}} (\sqrt{2}\hat{s}_y + 2\hat{s}_y\hat{s}_x + i\hat{s}_z). \end{aligned}$$

The case \(n = 1\) and \(N = 3^1 = 3\). Nonsymmetric system

Here, we obtain results

$$\begin{aligned} \, &\hat{x} = \hat{x}_0 = \begin{pmatrix} 2&0&0 \\ 0&1&0 \\ 0&0&0 \end{pmatrix} = \hat{1} + \hat{s}_z, \\ &\hat p_{-1} =\frac{1}{6} \begin{pmatrix} 6& 1 - \sqrt{3}i& 1 + \sqrt{3}i \\ 1 + \sqrt{3}i& 6 & 1 - \sqrt{3}i \\ 1 - \sqrt{3}i& 1 + \sqrt{3}i& 6 \end{pmatrix}=\hat{1} + \frac{\sqrt{2}}{6}\hat{s}_{x} + \frac{1}{\sqrt{6}}\hat{s}_{y} - \frac{\sqrt{3}}{6}(2\hat{s}_{y}\hat{s}_{x} + i\hat{s}_{z}). \end{aligned}$$

The case \(n = 2\) and \(N = 3^2 = 9\). Nonsymmetric system

In this case, we have

$$\begin{aligned} \, &x = x_0 + 3\cdot x_1=\operatorname{diag}(8;7;6;5;4;3;2;1;0),\\ &x_0=\operatorname{diag}(2;1;0;2;1;0;2;1;0),\qquad x_1=\operatorname{diag}(2;2;2;1;1;1;0;0;0). \end{aligned}$$

We set

$$E_n = \frac{1}{e^{-2 \pi i n/9}- 1},$$
Then
$$\begin{aligned} \, &\hat{p}_{-1}=\frac{1}{3}\begin{pmatrix} 3&E_{8} &E_{7} & 0& E_{5}& E_{4}&0 &E_{2} & E_{1}\\ E_{1} & 3 &E_{8} &E_{7} & 0& E_{5}& E_{4}&0 &E_{2}\\ E_{2} &E_{1} & 3 &E_{8} &E_{7} & 0& E_{5}& E_{4}&0\\ 0&E_{2} &E_{1} & 3 &E_{8} &E_{7} & 0& E_{5}& E_{4}\\ E_{4} &0&E_{2} &E_{1} & 3 &E_{8} &E_{7} & 0& E_{5}\\ E_{5} &E_{4} &0&E_{2} &E_{1} & 3 &E_{8} &E_{7} & 0\\ 0 &E_{5} &E_{4} &0&E_{2} &E_{1} & 3 &E_{8} &E_{7} \\ E_{7} &0 &E_{5} &E_{4} &0&E_{2} &E_{1} & 3 &E_{8} \\ E_{8} & E_{7} &0 &E_{5} &E_{4} &0&E_{2} &E_{1} & 3 \end{pmatrix}, \\ &\hat{p}_{-2}=\begin{pmatrix} 1&0 &0 &3 E_{6} & 0&0 &3E_{3} &0 &0 \\ 0 & 1&0 &0 &3 E_{6} & 0&0 &3E_{3} &0 \\ 0 & 0& 1&0 &0 &3 E_{6} & 0&0 &3E_{3} \\ 3E_{3} &0 & 0& 1&0 &0 &3 E_{6} & 0&0 \\ 0& 3E_{3} &0 & 0& 1&0 &0 &3 E_{6} &0 \\ 0 & 0& 3E_{3} &0 & 0& 1&0 &0 &3 E_{6}\\ 3 E_{6} &0 & 0& 3E_{3} &0 & 0& 1&0 &0\\ 0 & 3 E_{6} &0 & 0& 3E_{3} &0 & 0& 1&0\\ 0 &0 & 3 E_{6} &0 & 0& 3E_{3} &0 & 0& 1\\ \end{pmatrix}, \end{aligned}$$
\(\hat{p} = \hat{p}_{-1}/3 + \hat{p}_{-2}/9\),
$$\hat{p} = \frac{1}{9}\begin{pmatrix} 4&E_{8} &E_{7} & 3 E_{6}& E_{5}& E_{4}&3 E_{3} &E_{2} & E_{1}\\ E_{1} & 4 &E_{8} &E_{7} & 3 E_{6}& E_{5}& E_{4}&3 E_{3} &E_{2}\\ E_{2} &E_{1} & 4 &E_{8} &E_{7} & 3 E_{6}& E_{5}& E_{4}&3 E_{3}\\ 3 E_{3}&E_{2} &E_{1} & 4 &E_{8} &E_{7} & 3 E_{6}& E_{5}& E_{4}\\ E_{4} &3 E_{3}&E_{2} &E_{1} & 4 &E_{8} &E_{7} & 3 E_{6}& E_{5}\\ E_{5} &E_{4} &3 E_{3}&E_{2} &E_{1} & 4 &E_{8} &E_{7} & 3 E_{6}\\ 3 E_{6} &E_{5} &E_{4} &3 E_{3}&E_{2} &E_{1} & 4 &E_{8} &E_{7} \\ E_{7} &3 E_{6} &E_{5} &E_{4} &3 E_{3}&E_{2} &E_{1} & 4 &E_{8} \\ E_{8} & E_{7} &3 E_{6} &E_{5} &E_{4} &3 E_{3}&E_{2} &E_{1} & 4 \end{pmatrix}.$$

The case \(n = 2\) and \(N = 3^2 = 9\). Symmetric system

In this case, we have

$$\begin{aligned} \, x=x_0 + 3 x_1 = \operatorname{diag}(4;3;2;1;0;-1;-2;-3;-4),\\ x_0=\operatorname{diag}(1;0;-1;1;0;-1;1;0;-1),\qquad x_1=\operatorname{diag}(1;1;1;0;0;0;-1;-1;-1). \end{aligned}$$

We set

$$G_n = \frac{(-1)^n}{2\sqrt{3}\sin[(9-n)/9]}.$$
Then
$$\begin{aligned} \, &\hat{p}_{-1}=\frac{1}{\sqrt{3}i}\begin{pmatrix} 0&G_{8} &G_{7} & 0& G_{5}& G_{4}&0 &G_{2} & G_{1}\\ G_{1} & 0 &G_{8} &G_{7} & 0& G_{5}& G_{4}&0 &G_{2}\\ G_{2} &G_{1} & 0 &G_{8} &G_{7} & 0& G_{5}& G_{4}&0\\ 0&G_{2} &G_{1} & 0 &G_{8} &G_{7} & 0& G_{5}& G_{4}\\ G_{4} &0&G_{2} &G_{1} & 0 &G_{8} &G_{7} & 0& G_{5}\\ G_{5} &G_{4} &0&G_{2} &G_{1} & 0 &G_{8} &G_{7} & 0\\ 0 &G_{5} &G_{4} &0&G_{2} &G_{1} & 0 &G_{8} &G_{7} \\ G_{7} &0 &G_{5} &G_{4} &0&G_{2} &G_{1} & 0 &G_{8} \\ G_{8} & G_{7} &0 &G_{5} &G_{4} &0&G_{2} &G_{1} & 0 \end{pmatrix}, \\ &\hat{p}_{-2}=\frac{1}{\sqrt{3}i} \begin{pmatrix} 0&0 &0 &1 & 0&0 &-1 &0 &0 \\ 0 & 0&0 &0 &1 & 0&0 &-1 &0 \\ 0 & 0& 0&0 &0 &1 & 0&0 &-1 \\ -1 &0 & 0& 0&0 &0 &1 & 0&0 \\ 0& -1 &0 & 0& 0&0 &0 &1 &0 \\ 0 & 0& -1 &0 & 0& 0&0 &0 &1\\ 1 &0 & 0& -1 &0 & 0& 0&0 &0\\ 0 & 1 &0 & 0& -1 &0 & 0& 0&0\\ 0 &0 & 1 &0 & 0& -1 &0 & 0& 0\\ \end{pmatrix}, \end{aligned}$$
\(\hat{p} = \hat{p}_{-1}/3 + \hat{p}_{-2}/9\),
$$\hat{p} = \frac{1}{9\sqrt{3}i}\begin{pmatrix} 0&3G_{8} &3G_{7} & 1& 3G_{5}& 3G_{4}&-1&3G_{2} & 3G_{1}\\ 3G_{1} & 0 &3G_{8} &3G_{7} & 1& 3G_{5}& 3G_{4}&-1 &3G_{2}\\ 3G_{2} &3G_{1} & 0 &3G_{8} &3G_{7} & 1& 3G_{5}& 3G_{4} & -1\\ -1&3G_{2} &3G_{1} & 0 &3G_{8} &3G_{7} & 1& 3G_{5}& 3G_{4}\\ 3G_{4} &-1&3G_{2} &3G_{1} & 0 &3G_{8} &3G_{7} & 1& 3G_{5}\\ 3G_{5} &3G_{4} &-1&3G_{2} &3G_{1} & 0 &3G_{8} &3G_{7} & 1\\ 1 &3G_{5} &3G_{4} &-1&3G_{2} &3G_{1} & 0 &3G_{8} &3G_{7} \\ 3G_{7} &1 &3G_{5} &3G_{4} &-1&3G_{2} &3G_{1} & 0 &3G_{8} \\ 3G_{8} & 3G_{7} &1 &3G_{5} &3G_{4} &-1&3G_{2} &3G_{1} & 0 \end{pmatrix}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.G., Polushkin, A.Y. Digital representation of continuous observables in quantum mechanics. Theor Math Phys 218, 464–482 (2024). https://doi.org/10.1134/S0040577924030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924030073

Keywords

Navigation