Skip to main content
Log in

A generalized Crewther relation and the V scheme: analytic results in fourth-order perturbative QCD and QED

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the analytic \(\overline{\mathrm{MS}}\) scheme, three-loop contribution to the perturbative Coulomb-like part of the static color potential of a heavy quark–antiquark system, we obtain an analytic expression for the fourth-order \(\beta\)-function in the gauge-invariant effective V scheme in the case of the generic simple gauge group. We also present the Adler function of electron–positron annihilation into hadrons and the coefficient function of the Bjorken polarized sum rule in the V scheme up to \(a^4_s\) terms. We demonstrate that at this level of the perturbation theory in this effective scheme, the generalized Crewther relation, which connects the flavor nonsinglet contributions to the Adler and Bjorken polarized sum rule functions, is satisfied. Starting from the \(a^2_s\) order, it contains a conformal symmetry breaking term that factors into the conformal anomaly \(\beta(a_s)/a_s\) and the polynomial in powers of \(a_s\). We prove that this relation also holds in other gauge-invariant renormalization schemes. The obtained results allows revealing the difference between the V-scheme \(\beta\)-function in QED and the Gell-Mann–Low \(\Psi\)-function. This distinction arises due to the presence of the light-by-light type scattering corrections first appearing in the static potential at the three-loop level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Interesting consequences of conformal symmetry violation are briefly discussed in Appendix B.

References

  1. G. S. Bali, “QCD forces and heavy quark bound states,” Phys. Rept., 343, 1–136 (2001); arXiv: hep-ph/0001312.

    Article  MATH  ADS  Google Scholar 

  2. F. Karbstein, M. Wagner, and M. Weber, “Determination of \(\Lambda_{\overline{\text{MS}}}^{(n_f=2)}\) and analytic parametrization of the static quark–antiquark potential,” Phys. Rev. D, 98, 114506, 19 pp. (2018); arXiv: 1804.10909.

    Article  ADS  Google Scholar 

  3. V. G. Bornyakov and I. E. Kudrov, “Decomposition of the static potential in \(SU(3)\) gluodynamics,” JETP Lett., 117, 328–331 (2023); arXiv: 2301.03076.

    Article  ADS  Google Scholar 

  4. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “Infrared behavior of the static potential in perturbative QCD,” Phys. Rev. D, 60, 091502, 4 pp. (1999); arXiv: hep-ph/9903355.

    Article  ADS  Google Scholar 

  5. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “Effective-field theories for heavy quarkonium,” Rev. Mod. Phys., 77, 1423–1496 (2005); arXiv: hep-ph/0410047.

    Article  Google Scholar 

  6. B. A. Kniehl, A. A. Penin, V. A. Smirnov, and M. Steinhauser, “Potential NRQCD and heavy- quarkonium spectrum at next-to-next-to-next-to-leading order,” Nucl. Phys. B, 635, 357–383 (2002); arXiv: hep-ph/0203166.

    Article  ADS  Google Scholar 

  7. W. Fischler, “Quark-antiquark potential in QCD,” Nucl. Phys. B, 129, 157–174 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Billoire, “How heavy must be quarks in order to build coulombic \(q\bar q\) bound states,” Phys. Lett. B, 92B, 343–347 (1980).

    Article  ADS  Google Scholar 

  9. M. Peter, “Static quark–antiquark potential in QCD to three loops,” Phys. Rev. Lett., 78, 602–605 (1997); arXiv: hep-ph/9610209.

    Article  ADS  Google Scholar 

  10. Y. Schröder, “The static potential in QCD to two loops,” Phys. Lett. B, 447, 321–326 (1999); arXiv: hep-ph/9812205.

    Article  ADS  Google Scholar 

  11. S. G. Gorishny, A. L. Kataev, and S. A. Larin, “The three-loop QED photon vacuum polarization function in the MS-scheme and the four-loop QED \(\beta\)-function in the on-shell scheme,” Phys. Lett. B, 273, 141–144 (1991); “Erratum,” test, 275, 512–512 (1992); 341, 448–448 (1995).

    Article  Google Scholar 

  12. A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “Fermionic contributions to the three-loop static potential,” Phys. Lett. B, 668, 293–298 (2008); arXiv: hep-ph/0809.1927.

    Article  ADS  Google Scholar 

  13. R. N. Lee, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “Analytic three-loop static potential,” Phys. Rev. D, 94, 054029, 8 pp. (2016); arXiv: 1608.02603.

    Article  MathSciNet  ADS  Google Scholar 

  14. A. L. Kataev and V. S. Molokoedov, “Fourth-order QCD renormalization group quantities in the \(V\) scheme and the relation of the \(\beta\) function to the Gell-Mann–Low function in QED,” Phys. Rev. D, 92, 054008, 19 pp. (2015); arXiv: 1507.03547.

    Article  ADS  Google Scholar 

  15. A. V. Garkusha, A. L. Kataev, and V. S. Molokoedov, “Renormalization scheme and gauge (in)dependence of the generalized Crewther relation: What are the real grounds of the \(\beta\)-factorization property?,” JHEP, 02, 161, 44 pp. (2018); arXiv: 1801.06231.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. R. J. Crewther, “Nonperturbative evaluation of the anomalies in low-energy theorems,” Phys. Rev. Lett., 28, 1421–1424 (1972).

    Article  ADS  Google Scholar 

  17. D. J. Broadhurst and A. L. Kataev, “Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond,” Phys. Lett. B, 315, 179–187 (1993); arXiv: hep-ph/9308274.

    Article  ADS  Google Scholar 

  18. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Adler function, Bjorken sum rule, and the Crewther relation to order \(\alpha_s^4\) in a general gauge theory,” Phys. Rev. Lett., 104, 132004, 4 pp. (2010); arXiv: 1001.3606.

    Article  ADS  Google Scholar 

  19. A. L. Kataev and S. V. Mikhailov, “New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models,” Theoret. and Math. Phys., 170, 139–150 (2012); arXiv: 1011.5248.

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Cvetič and A. L. Kataev, “Adler function and Bjorken polarized sum rule: Perturbation expansions in powers of the \(SU(N_c)\) conformal anomaly and studies of the conformal symmetry limit,” Phys. Rev. D, 94, 014006, 8 pp. (2016); arXiv: 1604.00509.

    Article  ADS  Google Scholar 

  21. G. Gabadadze and G. Tukhashvili, “Holographic CBK relation,” Phys. Lett. B, 782, 202–209 (2018); arXiv: 1712.09921.

    Article  MATH  ADS  Google Scholar 

  22. P. A. Baikov and S. V. Mikhailov, “The \(\beta\)-expansion for Adler function, Bjorken sum rule, and the Crewther–Broadhurst–Kataev relation at order \(O(\alpha_s^4)\),” JHEP, 09, 185, 17 pp. (2022); arXiv: 2206.14063.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. K. G. Chetyrkin, “Adler function, Bjorken sum rule and Crewther–Broadhurst–Kataev relation with generic fermion representations at order \(O(\alpha_s^4)\),” Nucl. Phys. B, 985, 115988, 11 pp. (2022); arXiv: 2206.12948.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. T. Gabadadze and A. L. Kataev, “On connection between coefficient functions for deep-inelastic and annihilation processes,” JETP Lett., 61, 448 (1995); arXiv: hep-ph/9502384.

    ADS  Google Scholar 

  25. R. J. Crewther, “Relating inclusive \(e^+e^-\) annihilation to electroproduction sum rules in quantum chromodynamics,” Phys. Lett. B, 397, 137–142 (1997); arXiv: hep-ph/9701321.

    Article  ADS  Google Scholar 

  26. V. M. Braun, G. P. Korchemsky, and D. Müller, “The uses of conformal symmetry in QCD,” Prog. Part. Nucl. Phys., 51, 311–398 (2003); arXiv: hep-ph/0306057.

    Article  ADS  Google Scholar 

  27. A. L. Kataev and V. S. Molokoedov, “The analytical \(\mathcal O(a^4_s)\) expression for the polarized Bjorken sum rule in the miniMOM scheme and the consequences for the generalized Crewther relation,” J. Phys.: Conf. Ser., 938, 012050, 8 pp. (2017); arXiv: 1711.03997.

    Google Scholar 

  28. V. S. Molokoedov, The effects of higher corrections in perturbation theory in QCD and their theoretical and phenomenological consequences [in Russian] (PhD thesis), Institute for Nuclear Research (INR) of the Russian Academy of Sciences, Moscow (2020), https://www.inr.ru/rus/referat/molokoed/dis.pdf.

    Google Scholar 

  29. L. von Smekal, K. Maltman, and A. Sternbeck, “The strong coupling and its running to four loops in a minimal MOM scheme,” Phys. Lett. B, 681, 336–342 (2009); arXiv: 0903.1696.

    Article  ADS  Google Scholar 

  30. J. A. Gracey, “Renormalization group functions of QCD in the minimal MOM scheme,” J. Phys. A: Math. Theor., 46, 225403, 19 pp. (2013); arXiv: 1304.5347.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. J. A. Gracey, “Momentum subtraction and the \(R\) ratio,” Phys. Rev. D, 90, 094026, 20 pp. (2014); arXiv: 1410.6715.

    Article  ADS  Google Scholar 

  32. B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, “Four-loop QCD propagators and vertices with one vanishing external momentum,” JHEP, 06, 040, 49 pp. (2017); arXiv: 1703.08532.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. J. Zeng, X.-G. Wu, X.-C. Zheng, and J.-M. Shen, “Gauge dependence of the perturbative QCD predictions under the momentum-space subtraction scheme,” Chinese Phys. C, 44, 113102, 22 pp. (2020); arXiv: 2004.12068.

    Article  ADS  Google Scholar 

  34. J. A. Gracey and R. H. Mason, “Five loop minimal MOM scheme field and quark mass anomalous dimensions in QCD,” J. Phys. A, 56, 085401, 22 pp. (2023); arXiv: 2210.14604.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. A. G. Grozin, “QCD cusp anomalous dimension: current status,” Internat. J. Modern Phys. A, 38, 2330004, 59 pp. (2023); arXiv: 2212.05290.

    Article  MathSciNet  ADS  Google Scholar 

  36. S. J. Brodsky, M. Melles, and J. Rathsman, “Two-loop scale dependence of the static QCD potential including quark masses,” Phys. Rev. D, 60, 096006, 14 pp. (1999); arXiv: hep-ph/9906324.

    Article  ADS  Google Scholar 

  37. S. J. Brodsky and H. J. Lu, “Commensurate scale relations in quantum chromodynamics,” Phys. Rev. D, 51, 3652–3668 (1995); arXiv: hep-ph/9405218.

    Article  ADS  Google Scholar 

  38. V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, “Mass spectra of doubly heavy Omega \(\Omega_{Q Q'}\) baryons,” Phys. Rev. D, 66, 034030, 13 pp. (2002); arXiv: hep-ph/0206140.

    Article  ADS  Google Scholar 

  39. A. Deur, S. J. Brodsky, and G. F. de Téramond, “The QCD running coupling,” Prog. Part. Nucl. Phys., 90, 1–74 (2016); arXiv: 1604.08082.

    Article  ADS  Google Scholar 

  40. R. Hoque, B. J. Hazarika, and D. K. Choudhury, “2S and 3S State Masses and decay constants of heavy-flavour mesons in a non-relativistic QCD potential model with three-loop effects in V-scheme,” Eur. Phys. J. C, 80, 1213, 10 pp. (2020).

    Article  ADS  Google Scholar 

  41. S. Afonin and T. Solomko, “Cornell potential in generalized Soft Wall holographic model,” J. Phys. G, 49, 105003, 25 pp. (2022); arXiv: 2208.02604.

    Article  MATH  ADS  Google Scholar 

  42. G. Grunberg, “Renormalization-scheme-invariant QCD and QED: The method of effective charges,” Phys. Rev. D, 29, 2315–2338 (1984).

    Article  ADS  Google Scholar 

  43. N. V. Krasnikov, “Analyticity and renormalization group,” Nucl. Phys. B, 192, 497–508 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  44. A. L. Kataev, N. V. Krasnikov, and A. A. Pivovarov, “The connection between the scales of the gluon and quark worlds in perturbative QCD,” Phys. Lett. B, 107, 115–118 (1981).

    Article  ADS  Google Scholar 

  45. D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-Abelian gauge theories,” Phys. Rev. Lett., 30, 1343–1346 (1973).

    Article  ADS  Google Scholar 

  46. H. D. Politzer, “Reliable perturbative results for strong interactions?,” Phys. Rev. Lett., 30, 1346–1349 (1973).

    Article  ADS  Google Scholar 

  47. P. M. Stevenson, “Optimized perturbation theory,” Phys. Rev. D, 23, 2916–2944 (1981).

    Article  ADS  Google Scholar 

  48. A. L. Kataev and V. V. Starshenko, “Estimates of the higher order QCD corrections to \(R(s)\), \(R_\tau\) and deep inelastic scattering sum rules,” Mod. Phys. Lett. A, 10, 235–250 (1995); arXiv: hep-ph/9502348.

    Article  ADS  Google Scholar 

  49. D. R. T. Jones, “Two-loop diagrams in Yang–Mills theory,” Nucl. Phys. B, 75, 531–538 (1974).

    Article  ADS  Google Scholar 

  50. W. E. Caswell, “Asymptotic behavior of non-Abelian gauge theories to two loop order,” Phys. Rev. Lett., 33, 244–246 (1974).

    Article  ADS  Google Scholar 

  51. É. Sh. Egoryan and O. V. Tarasov, “Renormalization of quantum chromodynamics in the two-loop approximation in an arbitrary gauge,” Theoret. and Math. Phys., 41, 863–867 (1979).

    Google Scholar 

  52. O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, “The Gell-Mann–Low function of QCD in the three-loop approximation,” Phys. Lett. B, 93, 429–432 (1980).

    Article  ADS  Google Scholar 

  53. S. A. Larin and J. A. M. Vermaseren, “The three-loop QCD \(\beta\)-function and anomalous dimensions,” Phys. Lett. B, 303, 334–336 (1993); arXiv: hep-ph/9302208.

    Article  ADS  Google Scholar 

  54. T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, “The four-loop \(\beta\)-function in quantum chromodynamics,” Phys. Lett. B, 400, 379–384 (1997); arXiv: hep-ph/9701390.

    Article  ADS  Google Scholar 

  55. M. Czakon, “The four-loop QCD \(\beta\)-function and anomalous dimensions,” Nucl. Phys. B, 710, 485–498 (2005); arXiv: hep-ph/0411261.

    Article  MATH  ADS  Google Scholar 

  56. A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “Three-loop static potential,” Phys. Rev. Lett., 104, 112002, 4 pp. (2010); arXiv: 0911.4742.

    Article  ADS  Google Scholar 

  57. C. Anzai, Y. Kiyo, and Y. Sumino, “Static QCD potential at three-loop order,” Phys. Rev. Lett., 104, 112003, 4 pp. (2010); arXiv: 0911.4335.

    Article  MATH  ADS  Google Scholar 

  58. H. R. P. Ferguson and D. H. Bailey, A polynomial time, numerically stable integer relation algorithm (NAS Technical Report, RNR-91-032) 1991, https://www.nas.nasa.gov/assets/nas/pdf/techreports/1991/rnr-91-032.pdf.

  59. D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications,” Math. Comput., 70, 1719–1736 (2001); arXiv: math/9905048.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. R. N. Lee, “Space-time dimensionality \(\mathcal D\) as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to \(\mathcal D\),” Nucl. Phys. B, 830, 474–492 (2010); arXiv: 0911.0252.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. R. N. Lee and K. T. Mingulov, “Introducing SummerTime: A package for high-precision computation of sums appearing in DRA method,” Comput. Phys. Commun., 203, 255–267 (2016); arXiv: 1507.04256.

    Article  MATH  ADS  Google Scholar 

  62. A. V. Nesterenko, “Electron-positron annihilation into hadrons at the higher-loop levels,” Eur. Phys. J. C, 77, 844, 16 pp. (2017); arXiv: 1707.00668.

    Article  ADS  Google Scholar 

  63. M. Davier, D. Díaz-Calderón, B. Malaescu, A. Pich, A. Rodríguez-Sánchez, and Z. Zhang, “The Euclidean Adler function and its interplay with \( \Delta {\alpha}_{\text{QED}}^{\text{had}}\) and \(\alpha_{s}\),” JHEP, 04, 067, 56 pp. (2023); arXiv: 2302.01359.

    Article  ADS  Google Scholar 

  64. K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, “Higher-order corrections to in quantum chromodynamics \(\sigma_\mathrm{tot}(e^+e^-\! \to \text{hadrons})\) in quantum chromodynamics,” Phys. Lett. B, 85, 277–279 (1979).

    Article  ADS  Google Scholar 

  65. M. Dine and J. Sapirstein, “Higher order QCD corrections in \(e^+e^-\) annihilation,” Phys. Rev. Lett., 43, 668–671 (1979).

    Article  ADS  Google Scholar 

  66. W. Celmaster and R. J. Gonsalves, “An Analytic calculation of higher order quantum chromodynamic corrections in \(e^+e^-\) annihilation,” Phys. Rev. Lett., 44, 560–564 (1980).

    Article  ADS  Google Scholar 

  67. S. G. Gorishny, A. L. Kataev, and S. A. Larin, “The \(O(\alpha^{3}_{s})\) corrections to \(\sigma_\mathrm{tot}(e^{+}e^{-}\to \text{hadrons})\) and \(\Gamma(\tau^{-} \to \nu_{\tau} + \text{hadrons})\) in QCD,” Phys. Lett. B, 259, 144–150 (1991).

    Article  ADS  Google Scholar 

  68. L. R. Surguladze and M. A. Samuel, “Total hadronic cross-section in \(e^+e^-\) annihilation at the four-loop level of perturbative QCD,” Phys. Rev. Lett., 66, 560–563 (1991); “Erratum,” 66, 2416–2416 (1991).

    Article  ADS  Google Scholar 

  69. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Order \(\alpha_s^4\) QCD corrections to \(Z\) and \(\tau\) decays,” Phys. Rev. Lett., 101, 012002, 4 pp. (2008); arXiv: 0801.1821.

    Article  ADS  Google Scholar 

  70. P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger, “Adler function, sum rules and Crewther relation of order \(\mathcal{O}(\alpha_s^4)\): The singlet case,” Phys. Lett. B, 714, 62–65 (2012); arXiv: 1206.1288.

    Article  ADS  Google Scholar 

  71. R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “Review of particle physics,” Prog. Theor. Exp. Phys., 2022, 083C01, 2269 pp. (2022).

    Article  Google Scholar 

  72. J. Kodaira, S. Matsuda, T. Muta, T. Uematsu, and K. Sasaki, “Quantum-chromodynamic effects in polarized electroproduction,” Phys. Rev. D, 20, 627–629 (1979).

    Article  Google Scholar 

  73. S. G. Gorishny and S. A. Larin, “QCD corrections to the parton-model sum rules for structure functions of deep inelastic scattering,” Phys. Lett. B, 172, 109–112 (1986).

    Article  ADS  Google Scholar 

  74. S. A. Larin and J. A. M. Vermaseren, “The \(\alpha_s^3\) corrections to the Bjorken sum rule for polarized electroproduction and to the Gross–Llewellyn Smith sum rule,” Phys. Lett. B, 259, 345–352 (1991).

    Article  ADS  Google Scholar 

  75. S. A. Larin, “The singlet contribution to the Bjorken sum rule for polarized deep inelastic scattering,” Phys. Lett. B, 723, 348–350 (2013); arXiv: 1303.4021.

    Article  MATH  ADS  Google Scholar 

  76. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Massless propagators, \(R(s)\) and multiloop QCD,” Nucl. Part. Phys. Proc., 261–262, 3–18 (2015); arXiv: 1501.06739.

    Article  Google Scholar 

  77. M. Beneke, “Renormalons,” Phys. Rept., 317, 1–142 (1999); arXiv: hep-ph/9807443.

    Article  ADS  Google Scholar 

  78. V. I. Zakharov, “QCD perturbative expansions in large orders,” Nucl. Phys. B, 385, 452–480 (1992).

    Article  ADS  Google Scholar 

  79. K. G. Chetyrkin and A. Retey, “Three-loop three-linear vertices and four-loop \(\widetilde{\mathrm{MOM}}\, \beta\) functions in massless QCD,” arXiv: hep-ph/0007088.

  80. F. Jegerlehner and O. V. Tarasov, “Explicit results for the anomalous three point function and non-renormalization theorems,” Phys. Lett. B, 639, 299–306 (2006); arXiv: hep-ph/0510308.

    Article  ADS  Google Scholar 

  81. G. ’t Hooft, “Some observations in quantum chromodynamics” (Notes based on lectures given at Orbis Scientiae, January 17–21, 1977, University of Miami, Coral Gables, Florida, USA).

  82. G. ’t Hooft, “Can we make sense out of ‘Quantum Chromodynamics’?,” in: The Whys of Subnuclear Physics (School of Subnuclear Physics, Erice, Italy, July 23 – August 10, 1977, The Subnuclear Series, Vol. 15, A. L. Zichichi, ed.) Springer, Boston, MA (1979), pp. 943–982.

    Chapter  Google Scholar 

  83. A. V. Garkusha and A. L. Kataev, “The absence of QCD \(\beta\)-function factorization property of the generalized Crewther relation in the ’t Hooft \(\bar{MS}\)-based scheme,” Phys. Lett. B, 705, 400–404 (2011); arXiv: 1108.5909.

    Article  ADS  Google Scholar 

  84. S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, “The analytic four-loop corrections to the QED \(\beta\)-function in the MS scheme and to the QED \(\Psi\)-function. Total reevaluation,” Phys. Lett. B, 256, 81–86 (1991).

    Article  ADS  Google Scholar 

  85. P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger, “Vector correlator in massless QCD at order \(\mathcal{O}(\alpha_s^4)\) and the QED \(\beta\)-function at five loop,” JHEP, 07, 017, 13 pp. (2012); arXiv: 1206.1284.

    Article  ADS  Google Scholar 

  86. F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, “The five-loop beta function of Yang–Mills theory with fermions,” JHEP, 02, 090, 17 pp. (2017); arXiv: 1701.01404.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  87. T. Luthe, A. Maier, P. Marquard, and Y. Schröder, “The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge,” JHEP, 10, 166, 18 pp. (2017); arXiv: 1709.07718.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  88. A. L. Kataev, “Conformal symmetry limit of QED and QCD and identities between perturbative contributions to deep-inelastic scattering sum rules,” JHEP, 02, 092, 21 pp. (2014); arXiv: 1305.4605.

    Article  ADS  Google Scholar 

  89. J. Blümlein, D. J. Broadhurst, and J. A. M. Vermaseren, “The multiple zeta value data mine,” Comput. Phys. Commun., 181, 582–625 (2010); arXiv: 0907.2557.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. J. Blümlein, “Structural relations of harmonic sums and Mellin transforms at weight \(w= 6\),” in: Motives, Quantum Field Theory, and Pseudodifferential Operators (Boston University, Boston, MA, June 2–13, 2008, Clay Mathematics Proceedings, Vol. 12, A. Carey, D. Ellwood, S. Paycha, and S. Rosenberg, eds.), AMS, Providence, RI (2010), pp. 167–188, arXiv: 0901.0837.

    MATH  Google Scholar 

  91. C. Anzai and Y. Sumino, “Algorithms to evaluate multiple sums for loop computations,” J. Math. Phys., 54, 033514, 22 pp. (2013).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. M. V. Kompaniets and E. Panzer, “Minimally subtracted six-loop renormalization of \(O(n)\)-symmetric \(\phi^4\) theory and critical exponents,” Phys. Rev. D, 96, 036016, 26 pp. (2017); arXiv: 1705.06483.

    Article  MathSciNet  ADS  Google Scholar 

  93. C. Michael, “Lattice action sum rules,” Nucl. Phys. B, 280, 13–24 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  94. H. J. Rothe, “A Novel look at the Michael lattice sum rules,” Phys. Lett. B, 355, 260–265 (1995); arXiv: hep-lat/9504012.

    Article  ADS  Google Scholar 

  95. H. G. Dosch, O. Nachtmann, and M. Rueter, “String formation in the model of the stochastic vacuum and consistency with low energy theorems,” arXiv: hep-ph/9503386.

  96. A. I. Shoshi, F. D. Steffen, H. G. Dosch, and H. J. Pirner, “Confining QCD strings, Casimir scaling, and a Euclidean approach to high-energy scattering,” Phys. Rev. D, 68, 074004, 32 pp. (2003); arXiv: hep-ph/0211287.

    Article  ADS  Google Scholar 

  97. M. N. Chernodub, “Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings,” Universe, 6, 202, 14 pp. (2020); arXiv: 1003.3225.

    Article  ADS  Google Scholar 

  98. S. L. Adler, J. C. Collins, and A. Duncan, “Energy-momentum-tensor trace anomaly in spin-\(1/2\) quantum electrodynamics,” Phys. Rev. D, 15, 1712–1721 (1977).

    Article  ADS  Google Scholar 

  99. J. C. Collins, A. Duncan, and S. D. Joglekar, “Trace and dilatation anomalies in gauge theories,” Phys. Rev. D, 16, 438–449 (1977).

    Article  ADS  Google Scholar 

  100. N. K. Nielsen, “The energy-momentum tensor in a non-Abelian quark gluon theory,” Nucl. Phys. B, 120, 212–220 (1977).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Funding

The work of V. S. Molokoedov was supported by the Russian Science Foundation (agreement No. 21-71-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Molokoedov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 44–76 https://doi.org/10.4213/tmf10471.

Appendix A

We consider the question related to the integral representation of multiple zeta values. In general, these functions are defined as

$$\zeta_{m_1,\dots,m_k}=\sum_{i_1=1}^\infty\sum_{i_2=1}^{i_1-1}\dotsb \sum_{i_k=1}^{i_{k-1}-1}\prod_{j=1}^k \frac{\operatorname{sign}(m_j)^{i_j}}{i_j^{|m_j|}}. $$
(71)
They were studied in detail in a number of works on the subject (see, e.g., [89]–[91], [61]). We use the Hurwitz–Lerch zeta function \(\Phi(z, s, q)\)
$$\Phi(z,s,q)=\sum_{k=0}^\infty\frac{z^k}{(k+q)^s} $$
(72)
and its integral representation
$$\Phi(z,s,q)=\frac{1}{\Gamma(s)}\int_0^1\frac{x^{q-1}(-\log x)^{s-1}}{1-zx}\,dx, $$
(73)
which is valid for \(\operatorname{Re}(q)>0\), \(\operatorname{Re}(s)>0\) and \(z\in[-1;1)\) or \(\operatorname{Re}(s)>1\) and \(z=1\).

Then, for the constant \(\zeta_{-5,-1}\) with transcendence of weight 6, appearing in calculating the three-loop correction to the static potential [13], we can write [28]

$$\begin{aligned} \, \zeta_{-5,-1}&=\sum_{k=1}^\infty\frac{(-1)^k}{k^5} \sum_{i=1}^{k-1}\frac{(-1)^i}{i} =\frac{15}{16}\zeta_5\log 2-\sum_{k=1}^\infty\frac{\Phi(-1,1,k)}{k^5}= \nonumber \\ &=\frac{15}{16}\zeta_5\log 2 -\int_0^1\frac{dx}{x(x+1)}\sum_{k=1}^\infty\frac{x^k}{k^5} =\frac{15}{16}\zeta_5\log 2-\zeta_6+\int_0^1\,dx\frac{\mathrm{Li}_5(x)}{x+1}. \end{aligned}$$
(74)
Therefore, the constant \(s_6=\zeta_6+\zeta_{-5,-1}\) can be represented in the form [90]
$$s_6=\frac{15}{16}\zeta_5\log 2 +\int_0^1dx\,\frac{\mathrm{Li}_5(x)}{x+1}\approx 0.9874414. $$
(75)

Similarly, we can obtain an integral representations for multiple zeta values with specific arguments arising in the intermediate calculations in [13]:

$$\zeta_{5,2}=\zeta_5\zeta_2-\zeta_7+\int_0^1dx\, \frac{{\mathrm{Li}_5}(x)\log x}{1-x}\approx 0.0385751,$$
(76)
$$\zeta_{-5, 2}=-\frac{15}{16}\zeta_5\zeta_2+\frac{63}{64}\zeta_7 +\int_0^1dx\,\frac{{\mathrm{Li}_5}(-x)\log x}{1-x}\approx 0.0271089.$$
(77)
For instance, the function \(\zeta_{5,3}\) occurs in the computation of the \(\overline{\mathrm{MS}}\)-scheme \(\beta\)-function of the \(O(N)\)-symmetric \(\phi^4\) theory in the six-loop approximation [92] (in the notations in that paper, \(\zeta_{3,5}\)):
$$\zeta_{5,3}=\zeta_3\zeta_5-\zeta_8 -\frac{1}{2}\int_0^1dx\,\frac{\mathrm{Li}_5(x)\log^2(x)}{1-x}\approx 0.0377077. $$
(78)

Appendix B

It is interesting to note some common features of the CBK relation and the action sum rule [93]–[97] (in lattice QCD, it is also known as the Michael sum rule). Indeed, both of them contain a conformal anomaly term, reflecting the effect of conformal symmetry violation. However, the second relation can be directly used in the nonperturbative region as well.

We recall that the conformal anomaly in the trace of the energy–momentum tensor of a massless \(SU(N_c)\) gauge theory in the Euclidean domain has the form [98]–[100]

$$T_{\mu\mu}(x)=\frac{\beta(a_s)}{2a_s}F^a_{\mu\nu}(x)F^a_{\mu\nu}(x) =2\frac{\beta(a_s)}{a_s}\mathcal L(x), $$
(79)
where \(\mathcal L(x)\) is the gluon gauge part of the Euclidean Lagrangian density of the \(SU(N_c)\) theory, expressed trough the Euclidean chromoelectric and chromomagnetic fields
$$\mathcal L(x)=\frac{1}{4}F^a_{\mu\nu}(x)F^a_{\mu\nu}(x) =\frac{1}{2}(\vec E(x)^2+\vec B(x)^2). $$
(80)

We note that owing to a change in the metric signature, the square of the Euclidean electric field has an opposite sing to its Minkowskian counterpart, while signs of the squares of the Euclidean and Minkowskian magnetic fields coincide. The action sum rule relates a certain combination of the static potential to the Euclidean chromoelectric and chromomagnetic condensates and the \(\beta\)-function [93]–[97],

$$\widetilde V(r)+r\,\frac{\partial\widetilde V(r)}{\partial r} =\frac{\beta(a_s)}{a_s}\biggl\langle\int d^3x\,(\vec E(x)^2+\vec B(x)^2)\biggr\rangle_r, $$
(81)
where \(\widetilde V(r)\) is the static potential in coordinate space including the confining and nonconfining components and \(\langle\,{\cdot}\,\rangle_r\) is the vacuum expectation value in the presence of a static quark–antiquark pair spaced apart from each other at a distance \(r\) excluding the analogous contribution without these field sources.

It would be interesting to study the possible relation of the action sum rule and the CBK relation based on the first principles of quantum field theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataev, A.L., Molokoedov, V.S. A generalized Crewther relation and the V scheme: analytic results in fourth-order perturbative QCD and QED. Theor Math Phys 217, 1459–1486 (2023). https://doi.org/10.1134/S0040577923100045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100045

Keywords

Navigation