Skip to main content
Log in

Multiple mirrors and the JKLMR conjecture

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We address the problem of the fulfillment of the conjecture proposed by Jockers et al. (JKLMR conjecture) on the equality of the partition function of a supersymmetric gauged linear sigma model on the sphere \(S^2\) and the exponential of the Kähler potential on the moduli space of Calabi–Yau manifolds. The problem is considered for a specific class of Calabi–Yau manifolds that does not belong to the Fermat type class. We show that the JKLMR conjecture holds when a Calabi–Yau manifold \(X(1)\) of such type has a mirror partner \(Y(1)\) in a weighted projective space that also admits a Calabi–Yau manifold of Fermat type \(Y(2)\). Moreover, the mirror \(X(2)\) for \(Y(2)\) has the same special geometry on the moduli space of complex structures as the original \(X(1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas and X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds,” Nucl. Phys. B, 355, 455–481 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Aleshkin and A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold,” J. Phys. A, 51, 055403, 18 pp. (2018); arXiv: 1706.05342.

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, “Two-sphere partition functions and Gromov–Witten invariants,” Commun. Math. Phys., 325, 1139–1170 (2014); arXiv: 1208.6244.

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Benini and S. Cremonesi, “Partition functions of \({\mathcal{N}=(2,2)}\) gauge theories on S\(^{2}\) and vortices,” Commun. Math. Phys., 334, 1483–1527 (2015); arXiv: 1206.2356.

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact results in \(D=2\) supersymmetric gauge theories,” JHEP, 05, 093, 69 pp. (2013); arXiv: 1206.2606.

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Aleshkin, A. Belavin, and A. Litvinov, “JKLMR conjecture and Batyrev construction,” J. Stat. Mech., 2019, 034003, 9 pp. (2019); arXiv: 1812.00478.

    Article  Google Scholar 

  7. K. Aleshkin and A. Belavin, “GLSM for Berglund–Hübsch type Calabi–Yau manifolds,” JETP Lett., 110, 711–714 (2019); arXiv: 1911.11678.

    Article  ADS  Google Scholar 

  8. A. A. Artem’ev and I. V. Kochergin, “On the calculation of the special geometry for a Calabi–Yau loop manifold and two constructions of the mirror manifold,” JETP Lett., 112, 263–268 (2020).

    Article  ADS  Google Scholar 

  9. I. V. Kochergin, “Calabi–Yau manifolds in weighted projective spaces and their mirror gauged linear sigma models,” Phys. Rev. D, 105, 066008, 14 pp. (2022); arXiv: 2112.06335.

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Krawitz, “FJRW rings and Landau–Ginzburg mirror symmetry,” arXiv: 0906.0796.

  11. T. L. Kelly, “Berglund–Hubsch–Krawitz mirrors via Shioda maps,” Adv. Theor. Math. Phys., 17, 1425–1449 (2013).

    Article  MathSciNet  Google Scholar 

  12. A. Belavin, V. Belavin, and G. Koshevoy, “Periods of the multiple Berglund–Hübsch–Krawitz mirrors,” Lett. Math. Phys., 111, 93, 18 pp. (2021); arXiv: 2012.03320.

    Article  ADS  Google Scholar 

  13. M. Kreuzer and H. Skarke, “On the classification of quasihomogeneous functions,” Commun. Math. Phys., 150, 137–147 (1992); arXiv: hep-th/9202039.

    Article  MathSciNet  Google Scholar 

  14. A. Belavin and B. Eremin, “On the equivalence of Batyrev and BHK mirror symmetry constructions,” Nucl. Phys. B, 961, 115271, 10 pp. (2020); arXiv: 2010.07687.

    Article  MathSciNet  Google Scholar 

  15. E. Witten, “Phases of \(N=2\) theories in two-dimensions,” in: Mirror symmetry II (AMS/IP Studies in Advanced Mathematics, Vol. 1, B. R. Greene and S.-T. Yau, eds.), AMS, Providence, RI (1996), pp. 143–211; arXiv: hep-th/9301042.

    Chapter  Google Scholar 

  16. P. Berglund and T. Hubsch, “A generalized construction of Calabi–Yau models and mirror symmetry,” SciPost Phys., 4, 009, 30 pp. (2018); arXiv: hep-th/1611.10300.

    Article  ADS  Google Scholar 

  17. P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory,” in: Mirror Symmetry I (AMS/IP Studies in Advanced Mathematics, Vol. 9, S.-T. Yau, ed.), AMS, Providence, RI (1998), pp. 31–95.

    Chapter  Google Scholar 

  18. A. A. Belavin and B. A. Eremin, “Mirror pairs of quintic orbifolds,” JETP Lett., 112, 370–375 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belavin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 149–162 https://doi.org/10.4213/tmf10341.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, A.A., Eremin, B.A. Multiple mirrors and the JKLMR conjecture. Theor Math Phys 213, 1441–1452 (2022). https://doi.org/10.1134/S0040577922100105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922100105

Keywords

Navigation