Skip to main content
Log in

Entanglement entropy of a near-extremal black hole

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study how the entanglement entropy of the Hawking radiation derived using the island recipe for the Reissner–Nordström black hole behaves as the black hole mass decreases. A general answer to the question essentially depends not only on the character of the mass decrease but also on the charge decrease. We assume a specific relation between the charge and mass \(Q^2=GM^2[1-(M/\mu)^{2\nu}]\), which we call the constraint equation. We discuss whether it is possible to have a constraint such that the entanglement entropy does not blow up at the end of evaporation, as happens in the case of thermodynamic entropy and the entanglement entropy for the Schwarzschild black hole. We show that for some special scaling parameters, the entanglement entropy of radiation does not blow up if the mass of the evaporating black hole exceeds the Planck mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Formula (2.5) is different from formula (4.17) in [16] and slightly different from formula (24) in [17]. The difference from [17] is due to the different choice of the tortoise coordinate \(r_*(r)\):

    $$\begin{aligned} \, &r_{*,[17]}(a)=a+\frac{r_+^2}{r_+-r_-}\log\biggl(\frac{a-r_+}{r_+}\biggr), \\ &r_{*,[17]}(b)=b+\frac{r_+^2}{r_+-r_-}\log\biggl(\frac{b-r_+}{r_+}\biggr) -\frac{r_-^2}{r_+-r_-}\log\biggl(\frac{b-r_-}{r_+}\biggr), \\ &r_{*,\,\mathrm{here}}(r)=r+\frac{r_+^2}{r_+-r_-}\log\biggl(\frac{r-r_+}{r_+}\biggr) -\frac{r_-^2}{r_+-r_-}\log\biggl(\frac{r-r_-}{r_-}\biggr),\quad \text{for }a\text{ and }b. \end{aligned}$$
  2. Indeed, at \(\nu\in[1,\mathcal V_1)\) for some \(\mathcal V_1\), as \(\tau\) decreases (if \(b\) increases), the increasing negative third term of the order \(\mathcal O(\alpha^2/\tau)\) can lead to negative derivative (3.5). Similarly, for \(\nu\in(\mathcal V_2,2]\) and some \(\mathcal V_2\), as \(\alpha\) decreases (if \(\mu\) increases) and \(c\) is large enough to exceed the first term, a negative fifth term of the order \(\mathcal O(\tau)\) can lead to negative derivative (3.5).

References

  1. S. W. Hawking, “Particle creation by black holes,” Comm. Math. Phys., 43, 199–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D, 14, 2460–2473 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett., 71, 3743–3746 (1993); arXiv: hep-th/9306083.

    Article  ADS  MathSciNet  Google Scholar 

  4. D. N. Page, “Time dependence of Hawking radiation entropy,” J. Cosmol. Astropart. Phys., 2013, 028, 27 pp. (2013); arXiv: 1301.4995.

    Article  MathSciNet  Google Scholar 

  5. G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP, 2020, 002, 83 pp. (2020); arXiv: 1905.08255.

    Article  MathSciNet  Google Scholar 

  6. A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP, 2019, 063, 46 pp. (2019); arXiv: 1905.08762.

    Article  MathSciNet  Google Scholar 

  7. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The entropy of Hawking radiation,” Rev. Modern Phys., 93, 035002, 23 pp. (2021); arXiv: 2006.06872.

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Engelhardt and A. C. Wall, “Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime,” JHEP, 2015, 073, 27 pp. (2015).

    Article  Google Scholar 

  9. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/ conformal field theory correspondence,” Phys. Rev. Lett., 96, 181602, 4 pp. (2006); arXiv: hep-th/0603001.

    Article  ADS  MathSciNet  Google Scholar 

  10. V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic entanglement entropy proposal,” JHEP, 2007, 062, 64 pp. (2007); arXiv: 0705.0016.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Almheiri, R. Mahajan, and J. E. Santos, “Entanglement islands in higher dimensions,” SciPost Phys., 9, 001, 18 pp. (2020); arXiv: 1911.09666.

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Krishnan, V. Patil, and J. Pereira, “Page curve and the information paradox in flat space,” arXiv: 2005.02993.

  13. K. Hashimoto, N. Iizuka, and Y. Matsuo, “Islands in Schwarzschild black holes,” JHEP, 2020, 085, 20 pp. (2020); arXiv: 2004.05863.

    Article  MathSciNet  Google Scholar 

  14. M. Alishahiha, A. Faraji Astaneh, and A. Naseh, “Island in the presence of higher derivative terms,” JHEP, 2021, 035, 20 pp. (2021); arXiv: 2005.08715.

    Article  MathSciNet  Google Scholar 

  15. Y. Matsuo, “Islands and stretched horizon,” JHEP, 2021, 051, 29 pp. (2021); arXiv: 2011.08814.

    Article  MathSciNet  Google Scholar 

  16. X. Wang, R. Li, and J. Wang, “Islands and Page curves of Reissner–Nordström black holes,” JHEP, 2021, 103, 19 pp. (2021); arXiv: 2101.06867.

    Article  Google Scholar 

  17. W. Kim and M. Nam, “Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island,” Eur. Phys. J. C, 81, 869, 10 pp. (2021); arXiv: 2103.16163.

    Article  ADS  Google Scholar 

  18. I. Aref’eva and I. Volovich, “A note on islands in Schwarzschild black holes,” arXiv: 2110.04233.

  19. G. W. Gibbons, “Vacuum polarization and the spontaneous loss of charge by black holes,” Comm. Math. Phys., 44, 245–264 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  20. W. T. Zaumen, “Upper bound on the electric charge of a black hole,” Nature, 247, 530–531 (1974).

    Article  ADS  Google Scholar 

  21. B. Carter, “Charge and particle conservation in black-hole decay,” Phys. Rev. Lett., 33, 558–561 (1974).

    Article  ADS  Google Scholar 

  22. T. Damour and R. Ruffini, “Quantum electrodynamical effects in Kerr–Newmann geometries,” Phys. Rev. Lett., 35, 463–466 (1975).

    Article  ADS  Google Scholar 

  23. D. N. Page, “Particle emission rates from a black hole. II. Massless particles from a rotating hole,” Phys. Rev. D, 14, 3260–3273 (1976).

    Article  ADS  Google Scholar 

  24. W. A. Hiscock and L. D. Weems, “Evolution of charged evaporating black holes,” Phys. Rev. D, 41, 1142–1151 (1990).

    Article  ADS  Google Scholar 

  25. Cl. Gabriel, “Spontaneous loss of charge of the Reissner–Nordström black hole,” Phys. Rev. D, 63, 024010, 4 pp. (2000).

    Article  ADS  Google Scholar 

  26. E. Sorkin and T. Piran, “Formation and evaporation of charged black holes,” Phys. Rev. D, 63, 124024 (2001); arXiv: gr-qc/0103090.

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. C. Ong, “The attractor of evaporating Reissner–Nordström black holes,” Eur. Phys. J. Plus, 136, 61 (2021); arXiv: 1909.09981.

    Article  Google Scholar 

  28. I. Aref’eva and I. Volovich, “Complete evaporation of black holes and Page curves,” arXiv: 2202.00548.

  29. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A, 42, 504005, 36 pp. (2009); arXiv: 0905.4013.

    Article  MathSciNet  Google Scholar 

Download references

Funding

I. Ya. Aref’eva and I. V. Volovich formulated the problem setup and interpreted the obtained results. The work of I. Ya. Aref’eva and I. V. Volovich was supported by the Russian Science Foundation under grant no. 19-11-00320, https://rscf.ru/en/project/19-11-00320/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 212, pp. 457–477 https://doi.org/10.4213/tmf10273.

Appendix Approximations for entanglement entropy near the extremal regime

We study how closely the extremal case can be approached such that the approximations under which the entropy with an island (2.5) was derived remain valid. Our analysis shows that for fixed parameters \(b\), \(c\), \(G\), \(\mu\), and \(\nu\), there exists \(M_{\mathrm{cr}}(b,c,G,\mu,\nu)\) such that all approximations are valid for \(M>M_{\mathrm{cr}}\).

For this purpose, we sketch the main steps of the derivation of the entropy with an island, Eq. (2.5). From the general formula (2.1), we obtain the entropy with an island for the configuration presented in Fig. 2:

$$\begin{aligned} \, S_{\mathcal I}(a,t_a)={}&\frac{2\pi a^2}{G} +\frac{c}{6}\log\biggl(\frac{16f(a)f(b)}{\kappa^4}\cosh^2\kappa t_a\cosh^2\kappa t_b\biggr)+{} \nonumber \\ &+\frac{c}{3} \log\biggl|\frac{\cosh\kappa(r_\ast(a)-r_\ast(b))-\cosh\kappa(t_a-t_b)} {\cosh\kappa(r_\ast(a)-r_\ast(b))+\cosh\kappa(t_a+t_b)}\biggr|, \end{aligned}$$
(A.1)
The following notation is used here:
$$r_*(r)=r+\frac{r_+^2}{r_+-r_-}\log\biggl|\frac{r-r_+}{r_+}\biggr| -\frac{r_-^2}{r_+-r_-} \log\biggl|\frac{r-r_-}{r_-}\biggr|,\qquad \kappa=\frac{r_+-r_-}{2 r_+}. $$
(A.2)
It is assumed that entropy (A.1) is extremized with respect to the coordinates \((a,t_a)\).

Assuming that \(a=r_++X\), \(X\ll r_+\), we use the approximation

$$\cosh\kappa(r_\ast(a)-r_\ast(b))\simeq\frac{1}{2}e^{\kappa(r_\ast(b)-r_\ast(a))} =\frac{1}{2}e^{\kappa(b-a)} \biggl(\frac{b-r_+}{a-r_+}\biggr)^{1/2} \biggl(\frac{a-r_-}{b-r_-}\biggr)^{r^2_-/(2r^2_+)}, $$
(A.3)
which is satisfied if
$$e^{2\kappa(r_\ast(b)-r_\ast(a))}\gg 1. $$
(A.4)
The late-time approximation is also used:
$$\cosh\kappa(t_a+t_b)\gg\frac{1}{2}e^{\kappa(r_\ast(b)-r_\ast(a))},\qquad \kappa t_{a,b}\gg 1. $$
(A.5)
It can then be seen that extremization over \(t_a\) gives \(t_a=t_b\).

We expand as

$$\log[1-2e^{\kappa(r_\ast(a)-r_\ast(b))}] \simeq -2e^{\kappa(r_*(a)-r_*(b))}, $$
(A.6)
which is valid if the inequality
$$\mathbf Y_1\colon\; 2e^{\kappa(r_*(a)-r_*(b))}\ll 1 $$
(A.7)
holds. Inequality (A.7) is sufficient for inequality (A.4) to hold. Then the approximate entropy with an island has the form
$$S_{\mathcal I}=\frac{2\pi a^2}{G} +\frac{c}{6}\log\biggl(\frac{f(a)f(b)}{\kappa^4}\biggr) +\frac{c}{3}\kappa(r_\ast(b)-r_\ast(a)) -\frac{2c}{3}e^{\kappa(r_*(a)-r_*(b))}. $$
(A.8)
The derivative of (A.8) with respect to \(a=r_++X\), \(X\ll r_+\), is expanded with respect to \(X\). In particular, we expand as
$$\frac{1}{X+r_+-r_-}\simeq\frac{1}{(r_+-r_-)} \biggl(1-\frac{X}{r_+-r_-}\biggr), $$
(A.9)
which is valid if the inequality
$$\mathbf Y_2\colon\; X\ll r_+-r_- $$
(A.10)
holds. Then the extremization of (A.8) with respect to \(a\) gives
$$X=\frac{c^2G^2r^2_+(r_+-r_-)^2 e^{-(b-r_+)(r_+-r_-)/r^2_+} ((b-r_-)/(r_+-r_-))^{r^2_-/r^2_+}} {(b-r_+)[cG(r_+-2r_-)+12\pi r^2_+(r_--r_+)]^2}. $$
(A.11)
Expanding (A.11) with respect to \(G\) gives
$$X=\frac{c^2G^2e^{2\kappa(r_+-b)}((b-r_-)/(r_+-r_-))^{r^2_-/r^2_+}} {144\pi^2r^2_+(b-r_+)}+ O(G^3), $$
(A.12)
which is valid (see the denominator in (A.11)) if the inequality
$$\mathbf Y_3\colon\;\frac{cG|r_+-2 r_-|}{12\pi r^2_+}\ll r_+-r_- $$
(A.13)
holds. The two inequalities in (A.5) can be rewritten as
$$\begin{aligned} \, &t_b\gg\frac{1}{2}(b-r_+)+\frac{r^2_+}{2(r_+-r_-)} \log\biggl[\frac{b-r_+}{X} \biggl(\frac{X+r_+-r_-}{b-r_-}\biggr)^{r^2_-/r^2_+}\biggr], \\ &t_b\gg\frac{2r^2_+}{r_+-r_-}. \end{aligned} $$
(A.14)
The right-hand sides of inequalities (A.14) diverge in the extremal case, but are limited from below in the near-extremal case, at least due to (A.13).

To control the degree of smallness of the left-hand sides of (A.7), (A.10), and (A.13) we set

$$\begin{aligned} \, &Y_1(\rho)=\rho2 e^{\kappa (r_*(a)-r_*(b))}-1, \\ &Y_2(\rho)=\rho X-r_++r_-, \\ &Y_3(\rho)=\rho\frac{cG|r_+-2r_-|}{12\pi r^2_+}-r_++r_-. \end{aligned} $$
(A.15)
We take some particular \(\rho>1\), for instance \(\rho=5\), and see when \(Y_{1,2,3}(\rho)<0\). Under constraint equation (1.1), the quantities in (A.15) become
$$\begin{aligned} \, &Y_1(\rho)|_{\text{on constr.}}=\rho 2 e^{\kappa (G M (1+\alpha)+ X-b)} \biggl(\frac{X}{b-G M(1+\alpha)}\biggr)^{1/2}\times{} \\ &\hphantom{Y_1(\rho)|_{\text{on constr.}}={}}\times\biggl(\frac{b-G M(1-\alpha)} {X+2\alpha GM}\biggr)^{(1-\alpha)^2/(2(1+\alpha)^2)}-1, \\ &Y_2(\rho)|_{\text{on constr.}}=\rho X-2\alpha GM, \\ &Y_3(\rho)|_{\text{on constr.}} =\rho \frac{c (1-3\alpha)}{12\pi M(1+\alpha)^2}-2\alpha GM, \end{aligned} $$
(A.16)
where \(X\) in Eq. (A.12), under constraint equation (1.1), is
$$X=\frac{c^2e^{2\kappa(G M (1+\alpha)-b)} ((b-GM(1-\alpha))/(2\alpha GM))^{(1-\alpha)^2/(1+\alpha)^2}} {144\pi^2 M^2 (1+\alpha)^2(b-GM(1+\alpha))}. $$
(A.17)

Numerical analysis of the inequalities \(Y_{1,2,3}(\rho)<0\), Eq. (A.16), under constraint equation (1.1) on the \((M,\mu)\) plane for \(\nu=1.5\) and \(\nu=2\), various \(b=10,100,1000\), and \(\rho=5\) is presented in Fig. 13. It can be seen that the condition \(Y_3<0\) is the strongest in most cases, except at relatively small \(b\) and large \(\mu\), as shown in Fig. 13a and Fig. 13d. The larger \(\nu\) and \(\mu\) are, the larger the value of the critical mass \(M_{\mathrm{cr}}\) up to which \(M>M_{\mathrm{cr}}\) the evaporation process can be considered. We also see that there is practically no dependence of \(M_{\mathrm{cr}}\) on \(b\).

Under constraint equation (1.1), the inequality \({\mathbf Y}_3\), Eq. (A.13), can be written as

$${\mathbf Y}_3\colon\frac{c(1-3\alpha)}{12\pi M(1+\alpha)^2}\ll 2\alpha GM, $$
(A.18)
which for small \(\alpha\) can be simplified to
$$\mathbf Y_3\colon\frac{c}{24\pi GM^2}\ll\alpha. $$
(A.19)

Summarizing the above consideration, we can say that the approximations that ensure the validity of representation (2.5) for not too small \(b\) simply reduce to one inequality (A.19). Recalling the requirement of closeness to the extremal case, \(\alpha\ll1\), we obtain the inequality

$$\frac{c}{24\pi GM^2}\ll\alpha\ll 1. $$
(A.20)
We note that as can be seen from (A.20), inequality (A.20) may not be satisfied at sufficiently small \(\alpha\) (large \(\mu\) and/or \(\nu\)) and large \(c\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y., Volovich, I.V. & Rusalev, T.A. Entanglement entropy of a near-extremal black hole. Theor Math Phys 212, 1284–1302 (2022). https://doi.org/10.1134/S0040577922090100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922090100

Keywords

Navigation