Skip to main content
Log in

Overlap between usual and modified Bethe vectors

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the overlap of Bethe vectors of the \(XXX\) spin chain with a diagonal twist and the modified Bethe vectors with a general twist. We find a determinant representation for this overlap under one additional condition on the twist parameters. Such objects arise in the calculations of nonequilibrium physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Theoret. and Math. Phys., 40, 688–706 (1979).

    Article  ADS  Google Scholar 

  2. L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France, August 1 – September 8, 1995, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219.

    MathSciNet  MATH  Google Scholar 

  3. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  Google Scholar 

  4. S. Belliard and N. Crampé, “Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz,” SIGMA, 9, 072, 12 pp. (2013); arXiv: 1309.6165.

    MathSciNet  MATH  Google Scholar 

  5. J. Cao, W. L. Yang, K. Shi, and Y. Wang, “Off-diagonal Bethe ansatz and exact solution a topological spin ring,” Phys. Rev. Lett., 111, 137201, 5 pp. (2013); arXiv: 1305.7328.

    Article  ADS  Google Scholar 

  6. Y. Wang, W.-L. Yang, J. Cao, and K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models, Springer, Heidelberg (2015).

    Book  Google Scholar 

  7. S. Belliard, N. A. Slavnov, and B. Vallet, “Scalar product of twisted XXX modified Bethe vectors,” J. Stat. Mech. Theory Exp., 2018, 093103, 29 pp. (2018); arXiv: 1805.11323.

    Article  MathSciNet  Google Scholar 

  8. S. Belliard, N. A. Slavnov, and B. Vallet, “Modified algebraic Bethe ansatz: Twisted XXX case,” SIGMA, 14, 054, 18 pp. (2018); arXiv: 1804.00597.

    MathSciNet  MATH  Google Scholar 

  9. S. Belliard and N. A. Slavnov, “Scalar products in twisted XXX spin chain. Determinant representation,” SIGMA, 15, 066, 30 pp. (2019); arXiv: 1906.06897.

    MathSciNet  MATH  Google Scholar 

  10. M. Gaudin, “Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations,” Preprint, CEA-N-1559(1), Centre d’Etudes Nucléaires de Saclay, Saclay, France (1972).

  11. M. Gaudin, La fonction d’onde de Bethe, Masson, Paris (1983).

    MATH  Google Scholar 

  12. V. E. Korepin, “Calculation of norms of Bethe wave functions,” Commun. Math. Phys., 86, 391–418 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  13. N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,” Theoret. and Math. Phys., 79, 502–508 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Belliard and R. A. Pimenta, “Slavnov and Gaudin–Korepin formulas for models without \({\rm U}(1)\) symmetry: the twisted XXX chain,” SIGMA, 11, 099, 12 pp. (2015); arXiv: 1506.06550.

    MathSciNet  MATH  Google Scholar 

  15. A. Gorsky, A. Zabrodin, and A. Zotov, “Spectrum of quantum transfer matrices via classical many-body systems,” JHEP, 2014, 070, 28 pp. (2014); arXiv: 1310.6958.

    Article  MathSciNet  Google Scholar 

  16. A. G. Izergin, Sov. Phys. Dokl., 32, 878–879 (1987).

    ADS  Google Scholar 

  17. N. Gromov, F. Levkovich-Maslyuk, and P. Ryan, “Determinant form of correlators in high rank integrable spin chains via separation of variables,” JHEP, 2021, 169, 81 pp. (2021); arXiv: 2011.08229.

    Article  MathSciNet  Google Scholar 

  18. O. Tsuchiya, “Determinant formula for the six-vertex model with reflecting end,” J. Math. Phys., 39, 5946–5951 (1998); arXiv: solv-int/9804010.

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Belliard and N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation,” JHEP, 10, 103, 17 pp. (2019); arXiv: 1908.00032.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow. This work is supported by the Russian Science Foundation under grant 19-11-00062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Slavnov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 82–100 https://doi.org/10.4213/tmf10136.

Appendix: Properties of the MID

A.1. Transformations of the MID

In this Appendix, we list several properties of the MID. A more detailed list together with the proofs can be found in [7].

The MID and the conjugate one are related by

$$ \kern1.8pt\overline{\vphantom{K}\kern7.0pt}\kern-8.8pt K _{n,m}^{(z)}(\bar u|\bar v)=(1-z)^{m-n}K_{m,n}^{(z)}(\bar v|\bar u).$$
(A.1)
The MID has the following property under the shift of one of the parameter sets:
$$K_{n,m}^{(z)}(\bar u-c|\bar v)=\frac{(-z)^{n}(1-z)^{m-n}}{f(\bar v,\bar u)}K_{m,n}^{(1/z)}(\bar v|\bar u),$$
(A.2)
$$\kern1.8pt\overline{\vphantom{K}\kern7.0pt}\kern-8.8pt K _{n,m}^{(z)}(\bar u+c|\bar v)=\frac{(-z)^{n}(1-z)^{m-n}}{f(\bar u,\bar v)} \kern1.8pt\overline{\vphantom{K}\kern7.0pt}\kern-8.8pt K _{m,n}^{(1/z)}(\bar v|\bar u).$$
(A.3)

Some bilinear combinations of the MIDs reduce to a new MID.

Proposition A.1.

Let \(\bar\xi\) , \(\bar u\) , and \(\bar v\) be sets of arbitrary complex numbers such that \(\#\bar\xi=l\) , \(\#\bar u=n\) and \(\#\bar v=m\) . Then

$$ \sum_{\{\bar\xi_{ \scriptscriptstyle{\mathrm{I}} },\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar\xi}z_2^{l_{ \scriptscriptstyle{\mathrm{I}} }} K_{n,l_{ \scriptscriptstyle{\mathrm{I}} }}^{(z_1)}(\bar u|\bar\xi_{ \scriptscriptstyle{\mathrm{I}} })K_{m,l_{ \scriptscriptstyle{\mathrm{II}} }}^{(z_2)}(\bar v|\bar\xi_{ \scriptscriptstyle{\mathrm{II}} })f(\bar\xi_{ \scriptscriptstyle{\mathrm{II}} },\bar\xi_{ \scriptscriptstyle{\mathrm{I}} })f(\bar u,\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }) =K_{n+m,l}^{(z_1z_2)}(\{\bar u,\bar v\}|\bar\xi).$$
(A.4)
Here, \(l_{ \scriptscriptstyle{\mathrm{I}} }=\#\bar\xi_{ \scriptscriptstyle{\mathrm{I}} }\) and \(l_{ \scriptscriptstyle{\mathrm{II}} }=\#\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }\) . The sum is taken over all partitions \(\{\bar\xi_{ \scriptscriptstyle{\mathrm{I}} },\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar\xi\) . There are no restrictions on the cardinalities of the subsets.

Replacing \(K_{n,l_{ \scriptscriptstyle{\mathrm{I}} }}^{(z_1)}(\bar u|\bar\xi_{ \scriptscriptstyle{\mathrm{I}} })\) in (A.4) with the conjugate MID via (A.1) and (A.2), we obtain

$$\sum_{\{\bar\xi_{ \scriptscriptstyle{\mathrm{I}} },\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar\xi}\biggl(-\frac{z_2}{z_1}\biggr)^{\!l_{ \scriptscriptstyle{\mathrm{I}} }} \kern1.8pt\overline{\vphantom{K}\kern7.0pt}\kern-8.8pt K _{n,l_{ \scriptscriptstyle{\mathrm{I}} }}^{(z_1)}(\bar u|\bar\xi_{ \scriptscriptstyle{\mathrm{I}} })K_{m,l_{ \scriptscriptstyle{\mathrm{II}} }}^{(z_2)}(\bar v|\bar\xi_{ \scriptscriptstyle{\mathrm{II}} })f(\bar\xi_{ \scriptscriptstyle{\mathrm{II}} },\bar\xi_{ \scriptscriptstyle{\mathrm{I}} }) =f(\bar\xi,\bar u)K_{n+m,l}^{(z_1z_2)}(\{\bar u-c,\bar v\}|\bar\xi).$$
Setting \(z_1=z_2=1\) here yields
$$ \sum_{\{\bar\xi_{ \scriptscriptstyle{\mathrm{I}} },\bar\xi_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar\xi}(-1)^{l_{ \scriptscriptstyle{\mathrm{I}} }} \kern1.8pt\overline{\vphantom{K}\kern7.0pt}\kern-8.8pt K _{n,l_{ \scriptscriptstyle{\mathrm{I}} }}^{(1)}(\bar u|\bar\xi_{ \scriptscriptstyle{\mathrm{I}} })K_{m,l_{ \scriptscriptstyle{\mathrm{II}} }}^{(1)}(\bar v|\bar\xi_{ \scriptscriptstyle{\mathrm{II}} })f(\bar\xi_{ \scriptscriptstyle{\mathrm{II}} },\bar\xi_{ \scriptscriptstyle{\mathrm{I}} }) =f(\bar\xi,\bar u)K_{n+m,l}^{(1)}(\{\bar u-c,\bar v\}|\bar\xi).$$
(A.5)

A.2. Other determinants related to the MID

Proposition A.2.

Let \(\bar u=\{u_1,\ldots,u_N\}\) , \(\bar\eta=\{\eta_1,\ldots,\eta_N\}\) , and \(z\) be arbitrary complex numbers. Let \(F_k^{(1)}(u)\) and \(F_k^{(2)}(u)\) , \(k=1,\ldots,N\) , be two sets of functions

$$ \begin{aligned} \, &F_k^{(1)}(u)=\phi_1(u)\biggl(\frac z{g(\bar\eta_k,u)}-h(\bar\eta_k,u)\biggr)+\phi_2(u)\biggl(\frac{1}{g(u,\bar\eta_k)}-z h(u,\bar\eta_k)\biggr), \\ &F_k^{(2)}(u)=\frac{(-1)^{N-1}\phi_1(u)}{g(u,\bar\eta_k)}-\phi_2(u)h(u,\bar\eta_k), \end{aligned}$$
(A.6)
where \(\phi_\ell(z)\) ( \(\ell=1,2\) ) are two arbitrary functions. We compose two \(N\times N\) matrices \(\widehat F^{(1)}\) and \(\widehat F^{(2)}\) with the entries
$$ \widehat F_{jk}^{(1)}=F_k^{(1)}(u_j),\qquad\widehat F_{jk}^{(2)}=F_k^{(2)}(u_j).$$
(A.7)
Then
$$ \det_N\widehat F^{(1)}=(z-1)^N\det_N\widehat F^{(2)}.$$
(A.8)

Proof.

Obviously, both determinants can be presented in the form

$$ \det_N\widehat F^{(\ell)}=\sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u}X^{(\ell)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\phi_1(\bar u_{ \scriptscriptstyle{\mathrm{I}} })\phi_2(\bar u_{ \scriptscriptstyle{\mathrm{II}} }), \qquad \ell=1,2,$$
(A.9)
where the coefficients \(X^{(\ell)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\) are independent of \(\phi_1\) and \(\phi_2\). In this equation, we used the shorthand notation for the products of the functions \(\phi_\ell(u)\), \(\ell=1,2\). Because \(\phi_\ell\) are arbitrary functions, Eq. (A.8) holds if and only if
$$ X^{(1)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=(z-1)^N X^{(2)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })$$
(A.10)
for an arbitrary partition \(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u\). However, it is easy to see that without a loss of generality, it suffices to prove (A.10) for \(\bar u_{ \scriptscriptstyle{\mathrm{I}} }=\{u_1,\ldots,u_p\}\) and \(\bar u_{ \scriptscriptstyle{\mathrm{II}} }=\{u_{p+1},\ldots,u_N\}\). Here, \(p\) is an arbitrary integer from the set \(\{0,1,\ldots,N\}\).

To obtain the coefficients \(X^{(\ell)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\), we should set \(\phi_2(u_j)=0\) for \(j=1,\ldots,p\) and \(\phi_1(u_j)=0\) for \(j=p+1,\ldots,N\) in (A.6) and (A.6). We obtain

$$ X^{(\ell)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=\det_N\Phi^{(\ell)},\qquad\ell=1,2,$$
(A.11)
where
$$ \begin{alignedat}{3} &\Phi^{(1)}_{jk}=\frac z{g(\bar\eta_k,u_j)}-h(\bar\eta_k,u_j),&\qquad &j=1,\ldots,p, \\ &\Phi^{(1)}_{jk}=\frac{1}{g(u_j,\bar\eta_k)}-z h(u_j,\bar\eta_k),&\qquad &j=p+1,\ldots,N, \end{alignedat}$$
(A.12)
and
$$ \begin{alignedat}{3} &\Phi^{(2)}_{jk}=\frac{(-1)^{N-1}}{g(u_j,\bar\eta_k)},&\qquad &j=1,\ldots,p, \\ &\Phi^{(2)}_{jk}=-h(u_j,\bar\eta_k),&\qquad &j=p+1,\ldots,N. \end{alignedat}$$
(A.13)

Let \(u_j=u'_j+c\) for \(j=1,\ldots,p\), and \(u_j=u'_j\) for \(j=p+1,\ldots,N\). Using \(1/g(u_j,\bar\eta_k)=h(u'_j,\bar\eta_k)\) and \(h(\bar\eta_k,u_j)=(-1)^{N-1}/g(u'_j,\bar\eta_k)\) (see (2.11)) for \(k=1,\ldots,p\), we obtain

$$ X^{(\ell)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=(-1)^{(\ell+p-1)N}\det_N\widetilde{\Phi}^{(\ell)},\qquad\ell=1,2,$$
(A.14)
where
$$ \widetilde{\Phi}^{(1)}_{jk}=\frac{1}{g(u'_j,\bar\eta_k)}-z h(u'_j,\bar\eta_k),\qquad \widetilde{\Phi}^{(2)}_{jk}=h(u'_j,\bar\eta_k), \qquad j,k=1,\ldots,N.$$
(A.15)
It is easy to see that \(\det_N\widetilde{\Phi}^{(2)}\) reduces to the Cauchy determinant:
$$ \det_N\widetilde{\Phi}^{(2)} =h(\bar u',\bar\eta)\det_N\biggl(\frac{1}{h(u'_j,\eta_k)}\biggr) =\frac{1}{\Delta(\bar\eta)\Delta'(\bar u')}.$$
(A.16)

The determinant of \(\widetilde{\Phi}^{(1)}\) is computed in Corollary 4.1. Due to (4.12), we have

$$ \det_N\widetilde{\Phi}^{(1)}=\frac{(1-z)^N}{\Delta(\bar\eta)\Delta'(\bar u')}.$$
(A.17)
Comparing this equation with (A.16) and using (A.14), we see that
$$ X^{(1)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=(z-1)^NX^{(2)}(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }).$$
(A.18)
The proposition is proved. \(\blacksquare\)

Corollary A.1.

Let \(0\leqslant n\leqslant N\), and let \(\bar u=\{u_1,\ldots,u_N\}\), \(\bar\eta=\{\eta_{n+1},\ldots,\eta_N\}\), and \(z\) be arbitrary complex numbers (\(\bar\eta=\varnothing\) for \(n=N\)). We compose two \(N\times N\) matrices \(\widehat F^{(01)}\) and \(\widehat F^{(02)}\) with the entries

$$\widehat F_{jk}^{(01)}=\begin{cases} F_k^{(0)}(u_j), & k=1,\ldots,n,\\ F_k^{(1)}(u_j), & k=n+1,\ldots,N, \end{cases}\qquad \widehat F_{jk}^{(02)}=\begin{cases} F_k^{(0)}(u_j), & k=1,\ldots,n,\\ F_k^{(2)}(u_j), & k=n+1,\ldots,N, \end{cases}$$
where \(F_k^{(1)}(u)\) and \(F_k^{(2)}(u)\) are given by (A.6), while \(F_k^{(0)}(u)\), \(k=1,\ldots,n\), are arbitrary functions. Then
$$ \det_N\widehat F^{(01)} = (z-1)^{N-n}\det_N\widehat F^{(02)}.$$
(A.19)

Proof.

Developing the determinant \(\det\widehat F^{(01)}\) with respect to the first \(n\) columns, we obtain

$$ \det_N\widehat F^{(01)}=\sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u} (-1)^{P_{ \scriptscriptstyle{\mathrm{I}} , \scriptscriptstyle{\mathrm{II}} }} \det_n\bigl(F_k^{(0)}(u^{ \scriptscriptstyle{\mathrm{I}} }_j)\bigr) \det_{N-n}\bigl(F_k^{(1)}(u^{ \scriptscriptstyle{\mathrm{II}} }_j)\bigr),$$
(A.20)
where the sum is taken over partitions \(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u\) such that \(\#\bar u_{ \scriptscriptstyle{\mathrm{I}} }=n\) and \(\#\bar u_{ \scriptscriptstyle{\mathrm{II}} }\,{=}\,N-n\). The notation \(u^{ \scriptscriptstyle{\mathrm{I}} }_j\) (resp. \(u^{ \scriptscriptstyle{\mathrm{II}} }_j\)) means the \(j\)th element of the subset \(\bar u_{ \scriptscriptstyle{\mathrm{I}} }\) (resp. \(\bar u_{ \scriptscriptstyle{\mathrm{II}} }\)). Finally, \(P_{ \scriptscriptstyle{\mathrm{I}} , \scriptscriptstyle{\mathrm{II}} }\) is the parity of the partition \(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u\).

Due to Proposition A.2,

$$ \det_{N-n}\bigl(F_k^{(1)}(u^{ \scriptscriptstyle{\mathrm{II}} }_j)\bigr)=(z-1)^{N-n}\det_{N-n}\bigl(F_k^{(2)}(u^{ \scriptscriptstyle{\mathrm{II}} }_j)\bigr)$$
(A.21)
for an arbitrary subset \(\bar u_{ \scriptscriptstyle{\mathrm{II}} }\). Hence,
$$ \det_N\widehat F^{(01)}=(z-1)^{N-n}\sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u} (-1)^{P_{ \scriptscriptstyle{\mathrm{I}} , \scriptscriptstyle{\mathrm{II}} }}\det_n\bigl(F_k^{(0)}(u^{ \scriptscriptstyle{\mathrm{I}} }_j)\bigr)\det_{N-n}\bigl(F_k^{(2)}(u^{ \scriptscriptstyle{\mathrm{II}} }_j)\bigr).$$
(A.22)
Taking the sum over partitions, we arrive at (A.19). \(\blacksquare\)

In particular, setting

$$ \phi_1(u)=(-1)^{N}\hat\lambda_1(u)h(\bar v,u),\qquad \phi_2(u)=\hat\lambda_2(u)h(u,\bar v),$$
(A.23)
we obtain
$$ F_k^{(1)}(u_j)=\mathcal N^{(2)}_{jk},\qquad k=n+1,\ldots,N,$$
(A.24)
where \(\mathcal N^{(2)}_{jk}\) is given by (5.16). By Corollary A.1, we obtain
$$ \det_N\widehat F^{(01)} = (z-1)^{N-n}\det_N\widehat F^{(02)},$$
(A.25)
where
$$ \begin{aligned} \, &\widehat F_{jk}^{(01)}=\begin{cases} F_k^{(0)}(u_j),& k=1,\ldots,n,\\ \mathcal N^{(2)}_{jk}, & k=n+1,\ldots,N, \end{cases} \\ &\widehat F_{jk}^{(02)}=\begin{cases} F_k^{(0)}(u_j), & k=1,\ldots,n, \\ (-1)^{n+1}\hat\lambda_1(u_j)\dfrac{h(\bar v,u_j)}{g(u_j,\bar\eta_k)}-{} & \\ \qquad -\hat\lambda_2(u_j)h(u_j,\bar v)h(u_j,\bar\eta_k), &k=n+1,\ldots,N, \end{cases} \end{aligned}$$
(A.26)
and \(F_k^{(0)}(u)\), \(k=1,\ldots,n\), are arbitrary functions.

A.3. Summation formula

Let a function \(H(\bar u)\) of \(N\) variables \(\bar u=\{u_1,\ldots,u_N\}\) be defined as

$$ H(\bar u)=\Delta(\bar u)\det_N\Phi_k(u_j),$$
(A.27)
where \(\Phi_k(u)\) is a set of functions of one variable.

Proposition A.3.

Let \(\phi_1(u)\) and \(\phi_2(u)\) be one-variable functions. Then

$$\begin{aligned} \, \sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u}\phi_1(\bar u_{ \scriptscriptstyle{\mathrm{I}} })\phi_2(\bar u_{ \scriptscriptstyle{\mathrm{II}} }) f(\bar u_{ \scriptscriptstyle{\mathrm{II}} },\bar u_{ \scriptscriptstyle{\mathrm{I}} })H(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} }-c,\bar u_{ \scriptscriptstyle{\mathrm{II}} }\})= \Delta(\bar u)\det_N\bigl(\phi_1(u_j)\Phi_k(u_j-c)+\phi_2(u_j)\Phi_k(u_j)\bigr). \end{aligned}$$
(A.28)
The sum is taken over all possible partitions \(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u\) , and we use the shorthand notation for the products of the functions \(\phi_\ell(u)\) , \(\ell=1,2\) .

Proof is similar to the one of Proposition A.2.

The right-hand side of (A.28) can be presented as

$$\Delta(\bar u)\det_N\bigl(\phi_1(u_j)\Phi_k(u_j-c)+\phi_2(u_j)\Phi_k(u_j)\bigr)= \sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u}X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\phi_1(\bar u_{ \scriptscriptstyle{\mathrm{I}} })\phi_2(\bar u_{ \scriptscriptstyle{\mathrm{II}} }),$$
where the coefficients \(X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\) are independent of \(\phi_1\) and \(\phi_2\). Because \(\phi_\ell\) are arbitrary functions, Eq. (A.28) holds if and only if
$$ X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=f(\bar u_{ \scriptscriptstyle{\mathrm{II}} },\bar u_{ \scriptscriptstyle{\mathrm{I}} })H(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} }-c,\bar u_{ \scriptscriptstyle{\mathrm{II}} }\})$$
(A.29)
for an arbitrary partition \(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u\). Due to the symmetry of (A.28) over \(\bar u\), it suffices to prove (A.29) for \(\bar u_{ \scriptscriptstyle{\mathrm{I}} }=\{u_1,\ldots,u_p\}\) and \(\bar u_{ \scriptscriptstyle{\mathrm{II}} }=\{u_{p+1},\ldots,u_N\}\), where \(p\) is an arbitrary integer from the set \(\{0,1,\ldots,N\}\).

To obtain the coefficients \(X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })\), we should set \(\phi_2(u_j)=0\) for \(j=1,\ldots,p\) and \(\phi_1(u_j)=0\) for \(j=p+1,\ldots,N\) in (A.28). We obtain

$$ X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=\Delta(\bar u_{ \scriptscriptstyle{\mathrm{I}} })\Delta(\bar u_{ \scriptscriptstyle{\mathrm{II}} })g(\bar u_{ \scriptscriptstyle{\mathrm{II}} },\bar u_{ \scriptscriptstyle{\mathrm{I}} })\det_N\widetilde{\Phi},$$
(A.30)
where
$$ \begin{alignedat}{3} &\widetilde{\Phi}_{jk}=\Phi_k(u_j-c),&\qquad &j=1,\ldots,p, \\ &\widetilde{\Phi}_{jk}=\Phi_k(u_j),&\qquad &j=p+1,\ldots,N. \end{alignedat}$$
(A.31)

Let \(u_j=u'_j+c\) for \(j=1,\ldots,p\), and \(u_j=u'_j\) for \(j=p+1,\ldots,N\). Using \(g(x,y+c)=-1/h(y,x)\) for any \(x\) and \(y\), we obtain

$$ \Delta(\bar u_{ \scriptscriptstyle{\mathrm{I}} })\Delta(\bar u_{ \scriptscriptstyle{\mathrm{II}} })g(\bar u_{ \scriptscriptstyle{\mathrm{II}} },\bar u_{ \scriptscriptstyle{\mathrm{I}} })= (-1)^{p(N-p)}\frac{\Delta(\bar u'_{ \scriptscriptstyle{\mathrm{I}} })\Delta(\bar u'_{ \scriptscriptstyle{\mathrm{II}} })}{h(\bar u'_{ \scriptscriptstyle{\mathrm{I}} },\bar u'_{ \scriptscriptstyle{\mathrm{II}} })}= \frac{\Delta(\bar u')}{f(\bar u'_{ \scriptscriptstyle{\mathrm{I}} },\bar u'_{ \scriptscriptstyle{\mathrm{II}} })}.$$
(A.32)
Then (A.30) takes the form
$$ X(\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} })=\frac{\Delta(\bar u')}{f(\bar u'_{ \scriptscriptstyle{\mathrm{I}} },\bar u'_{ \scriptscriptstyle{\mathrm{II}} })}\det_N\Phi_k(u'_j)= \frac{H(\bar u')}{f(\bar u'_{ \scriptscriptstyle{\mathrm{I}} },\bar u'_{ \scriptscriptstyle{\mathrm{II}} })}.$$
(A.33)
Returning to the original variables and using \(f(x-c,y)=1/f(y,x)\) for any \(x\) and \(y\), we arrive at (A.29). \(\blacksquare\)

We deal with a particular case of the sum in (A.28) in Eq. (5.8). Indeed, let

$$\phi_1(u)=\lambda_1(u)f(\bar v,u),\qquad\phi_2(u)=\frac{\rho_2}{\rho_1}\lambda_2(u),\qquad \Phi_k(u)=\frac{f(u,\bar v)}{g(u,\bar\eta_k)}-z h(u,\bar\eta_k),$$
where \(\bar\eta=\{\eta_1,\ldots,\eta_N\}\) are arbitrary complex numbers. Then
$$ \Delta'(\bar\eta) H(\bar u)=(1-z)^{N-n}K^{(z)}_{N,n}(\bar u|\bar v).$$
(A.34)
Hence, due to Proposition A.3, we have
$$\begin{aligned} \, \sum_{\{\bar u_{ \scriptscriptstyle{\mathrm{I}} },\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\bar u} \biggl(\frac{\rho_2}{\rho_1}\biggr)^{\!N_{ \scriptscriptstyle{\mathrm{II}} }} &\lambda_2(\bar u_{ \scriptscriptstyle{\mathrm{II}} })\lambda_1(\bar u_{ \scriptscriptstyle{\mathrm{I}} })f(\bar u_{ \scriptscriptstyle{\mathrm{II}} },\bar u_{ \scriptscriptstyle{\mathrm{I}} })f(\bar v,\bar u_{ \scriptscriptstyle{\mathrm{I}} }) K^{(1)}_{N,n}(\{\bar u_{ \scriptscriptstyle{\mathrm{I}} }-c,\bar u_{ \scriptscriptstyle{\mathrm{II}} }\}|\bar v)= \nonumber\\ &=(1-z)^{N-n}\Delta'(\bar\eta)\Delta(\bar u)\det_N\mathcal{M}_{jk}, \end{aligned}$$
(A.35)
where
$$\begin{aligned} \, \mathcal{M}_{jk}={}&\lambda_1(u_j)f(\bar v,u_j)\biggl(\frac{f(u_j-c,\bar v)}{g(u_j-c,\bar\eta_k)}-z h(u_j-c,\bar\eta_k)\biggr)+{} \nonumber\\ &+\frac{\rho_2}{\rho_1}\lambda_2(u_j)\biggl(\frac{f(u_j,\bar v)}{g(u_j,\bar\eta_k)}-z h(u_j,\bar\eta_k)\biggr). \end{aligned}$$
(A.36)
Using Eqs. (2.11), we easily transform this result to representation (5.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belliard, S., Slavnov, N.A. Overlap between usual and modified Bethe vectors. Theor Math Phys 209, 1387–1402 (2021). https://doi.org/10.1134/S0040577921100056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921100056

Keywords

Navigation