Skip to main content
Log in

On Correlation Functions in the Coordinate and the Algebraic Bethe Ansatz

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Bethe ansatz, both in its coordinate and its algebraic version, is an exceptional method to compute the eigenvectors and eigenvalues of integrable systems. However, computing correlation functions using the eigenvectors thus constructed complicates rather fast. In this article, we will compute some simple correlation functions for the isotropic Heisenberg spin chain to highlight the shortcomings of both Bethe ansätze. In order to compare the results obtained from each approach, a discussion on the normalization of states in each ansatz will be required. We will show that the analysis can be extended to the long-range spin chain governing the spectrum of anomalous dimensions of single trace operators in four-dimensional Yang-Mills with maximal supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Beyond four-loops, it is also necessary to include a dressing phase factor in the S-matrix. Despite that, we will not include it in our computations.

  2. For generic values of the inhomogeneities, the function d is given by

    $$d(\lambda )=\prod _{n=1}^L{\frac{(\lambda -\xi _n)}{(\lambda -\xi _n+\eta )}} \ ,$$

    instead. Notice that it always vanishes when \(\lambda\) is equal to the value of one of the inhomogeneities, \(d(\xi _n)=0\) for any n.

  3. We follow the definition of the momentum in [5]. In the literature, it is also common the opposite definition of momentum, as both the CBA ansatz and the Bethe equations are invariant under the transformation \(p\rightarrow -p\) and \(x\rightarrow -x\).

  4. As long as the Bethe ansatz is exact and not only an asymptotic approximation.

  5. We impose the trace condition on the two-magnon state but not on the single-magnon state because the latter forces the correlation function to vanish.

  6. We want to thank N. A. Slavnov for discussions about this subject.

  7. We may think that we can use crossing symmetry to empty the bra state and simplify our computations, as it is usually done in the context of form factors, see [41]. Sadly, this is not possible here, as we cannot access crossing. We can get a nicer picture of this from the AdS/CFT correspondence. There, the long-range spin chain has a well-defined crossing transformation, but the Heisenberg spin chain corresponds to the limit where one of the periods of the torus that uniformised the magnon dispersion relation becomes infinitely large, thus forbidding us the access to the crossing transformation.

  8. Thanks to the periodicity condition, we will not need the explicit expression for C.

  9. Note that if we take \(g\rightarrow 0\), all inhomogeneities become the same, and (5.7) reproduces the limit in (4.31).

References

  1. Bethe, H.: On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain. Z. Phys. 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  2. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: The Quantum Inverse Problem Method. 1. Teor. Mat. Fiz. 40, 194–220 (1979)

    MathSciNet  Google Scholar 

  3. Baxter, R.J.: Partition function of the Eight-Vertex lattice model. Ann. Phys. 70(1), 193–228 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. Reshetikhin, NYu.: The functional equation method in the theory of exactly soluble quantum system. Sov. Phys. JETP 57, 691–696 (1983)

    ADS  MathSciNet  Google Scholar 

  5. Kitanine, N., Maillet, J.M., Terras, V. : Form factors of the XXZ Heisenberg spin-\(\frac{1}{2}\) finite chain. Nucl. Phys. B 554(3),647 (1999) arXiv:9807020

  6. Kitanine, N., Maillet, J.M., Slavnov, N.A., Terras, V.: On the algebraic Bethe ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain, in Solvable Lattice Models 2004 - Recent Progress on Solvable Lattice Models. RIMS, Kyoto 1480, 14 (2006). arXiv:0505006

  7. Korepin, V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Slavnov, N.A.: Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502 (1989)

    Article  MathSciNet  Google Scholar 

  9. Beisert, N., Ahn, C., Alday, L.F., Bajnok, Z., Drummond, J.M., Freyhult, L., Gromov, N., Janik, R.A., et al.: Review of AdS/CFT Integrability: An Overview. Lett. Math. Phys. 99, 3 (2012). arXiv:1012.3982

    Article  ADS  MathSciNet  Google Scholar 

  10. Rattazzi, R., Rychkov, V.S., Tonni, E., Vichi, A.: Bounding scalar operator dimensions in 4D CFT. JHEP 12, 031 (2008). arXiv:0807.0004

    Article  ADS  MathSciNet  Google Scholar 

  11. El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Solving the 3D Ising Model with the Conformal Bootstrap. Phys. Rev. D 86, 025022 (2012). arXiv:1203.6064

    Article  ADS  Google Scholar 

  12. Basso, B., Komatsu, S., Vieira, P. : Structure Constants and Integrable Bootstrap in Planar N=4 SYM Theory. arXiv:1505.06745

  13. Eden, B., Sfondrini, A.: Tessellating cushions: four-point functions in \(\cal{N}\) = 4 SYM. JHEP 10, 098 (2017). arXiv:1611.05436

    Article  ADS  MathSciNet  Google Scholar 

  14. Fleury, T., Komatsu, S.: Hexagonalization of Correlation Functions. JHEP 01, 130 (2017). arXiv:1611.05577

    Article  ADS  MathSciNet  Google Scholar 

  15. Roiban, R., Volovich, A.: Yang-Mills correlation functions from integrable spin chains. JHEP 0409, 032 (2004). arXiv:0407140

    Article  ADS  MathSciNet  Google Scholar 

  16. Escobedo, J., Gromov, N., Sever, A., Vieira, P.: Tailoring Three-Point Functions and Integrability. JHEP 1109, 028 (2011). arXiv:1012.2475

    Article  ADS  MathSciNet  Google Scholar 

  17. Foda, O.: \({\cal{N}}=4\) SYM structure constants as determinants. JHEP 1203, 096 (2012). arXiv:1111.4663

    ADS  MathSciNet  Google Scholar 

  18. Kostov, I.: Classical limit of the three-point function of \({mathcal N}=4\) supersymmetric Yang-Mills theory from integrability. Phys. Rev. Lett. 108, 261604 (2012). arXiv:1203.6180I. Kostov: Three-point function of semiclassical states at weak coupling, J. Phys. A 45(2012) 494018, [arXiv:1205.4412 [hep-th]]

  19. Foda, O., Wheeler, M. : Slavnov determinants, Yang-Mills structure constants, and discrete KP. arXiv:1203.5621

  20. Serban, D.: A note on the eigenvectors of long-range spin chains and their scalar products. JHEP 1301, 012 (2013). arXiv:1203.5842

    Article  ADS  MathSciNet  Google Scholar 

  21. Foda, O., Wheeler, M.: Partial domain wall partition functions. JHEP 1207, 186 (2012). arXiv:1205.4400

    Google Scholar 

  22. Gromov, N., Vieira, P. : Tailoring Three-Point Functions and Integrability IV. Theta-morphism. JHEP 04, 068, (2014) arXiv:1205.5288

  23. Kostov, I., Matsuo, Y.: Inner products of Bethe states as partial domain wall partition functions. JHEP 1210, 168 (2012). arXiv:1207.2562

    Article  ADS  MathSciNet  Google Scholar 

  24. Foda, O., Wheeler, M.: Variations on Slavnov’s scalar product. JHEP 1210, 096 (2012). arXiv:1207.6871

    Google Scholar 

  25. Bissi, A., Grignani, G., Zayakin, A.V. : The \(SO(6)\) Scalar Product and Three-Point Functions from Integrability. arXiv:1208.0100

  26. Serban, D.: Eigenvectors and scalar products for long range interacting spin chains II: the finite size effects. JHEP 1308, 128 (2013) arXiv:1302.3350

  27. Foda, O., Jiang, Y., Kostov, I., Serban, D.: A tree-level 3-point function in the \(su(3)\)-sector of planar \({mathcal N}=4\) SYM. JHEP 1310, 138 (2013) arXiv:1302.3539

  28. Kazama, Y., Komatsu, S., Nishimura, T.: A new integral representation for the scalar products of Bethe states for the XXX spin chain. JHEP 1309, 013 (2013) arXiv:1304.5011

  29. Wheeler, M.: Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in \(SU(3)\)-invariant models. Nucl. Phys. B 875, 186 (2013) arXiv:1306.0552

  30. Bettelheim, E., Kostov, I.: Semi-classical analysis of the inner product of Bethe states. J. Phys. A 47, 245401 (2014) arXiv:1403.0358

  31. Minahan, J.A., Zarembo, K.: The Bethe ansatz for \({mathcal N}=4\) superYang-Mills. JHEP 0303, 013 (2003) arXiv:0212208

  32. Beisert, N., Dippel, V., Staudacher, M.: A Novel Long-Range Spin Chain and Planar \(mathcal N =4\) Super Yang-Mills. JHEP 0407, 075 (2004) arXiv:0405001

  33. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge Monographs on Mathematical Physics, Cambridge Monographs on Mathematical Physics (1993)

    Book  Google Scholar 

  34. Faddeev, F.D. : How Algebraic Bethe Ansatz works for integrable model, Les Houches lectures (1996) arXiv:9605187

  35. Nepomechie, R.I.: A Spin chain primer. Int. J. Mod. Phys. B 13, 2973–2986 (1999) arXiv:9810032

  36. Gómez, C., Sierra, G., Ruiz-Altaba, M.: Quantum groups in two-dimensional physics. Cambridge University Press (2011)

  37. Gaudin, M.: Bose Gas in One Dimension. I. The Closure Property of the Scattering Wavefunctions. J. Math. Phys. 12, 1674 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  38. Göhmann, F., Korepin, V.E.: Solution of the quantum inverse problem. J. Phys. A 33, 1199 (1999) arXiv:9910253

  39. Maillet, J.M. : Correlation functions of the XXZ Heisenberg spin chain: Bethe ansatz approach. Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006)

  40. Sklyanin, E.K.: Quantum version of the method of inverse scattering problem. Zap. Nauchn. Semin. 95, 55–128 (1980). ((Russian version), J. Soviet Math. 19 (1982), 1546-1596 (English version))

    Google Scholar 

  41. Klose, T., McLoughlin, T.: Worldsheet Form Factors in AdS/CFT. Phys. Rev. D 87, 026004 (2013). arXiv:1208.2020

    Article  ADS  Google Scholar 

  42. Mossel, J.J. : Quantum integrable models out of equilibrium, Ph. D. Thesis (2012)

  43. Watson, K.M.: Some general relations between the photoproduction and scattering of pi mesons. Phys. Rev. 95, 228 (1954)

    Article  ADS  Google Scholar 

  44. Smirnov, F.A.: Form-factors in completely integrable models of quantum field theory. Adv. Ser. Math. Phys. 14, 1 (1992)

    Article  MathSciNet  Google Scholar 

  45. Klose, T., McLoughlin, T.: Comments on Worldsheet Form Factors in AdS/CFT. J. Phys. A 47(5), 055401 (2014) arXiv:1307.3506

  46. Janik, R.A.: The \(AdS_5 \times S^5\) superstring worldsheet S-matrix and crossing symmetry. Phys. Rev. D 73, 086005 (2006) arXiv:0603038

  47. Belliard, S., Ragoucy, E.: Nested Bethe ansatz for ’all’ closed spin chains. J. Phys. A 41, 295202 (2008) arXiv:0804.2822

Download references

Acknowledgements

We are grateful to R. Ruiz and N. A. Slavnov for numerous discussions and comments. The work of J. M. N. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2121 “Quantum Universe” - 390833306.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the research and results in the article.

Corresponding authors

Correspondence to Rafael Hernández or Juan Miguel Nieto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A General Form of \(\mathcal{F}^L_n\)

In this appendix we are going to obtain the general expression of the function \(\mathcal{F}^L_n\). All along the calculation, the limit \(\alpha \rightarrow 0\) will be assumed. Using the first recurrence relation in (4.39) and setting both d and \(\frac{\partial ^{} d}{\partial \lambda ^{}}\) to zero we find

$$\begin{aligned} \mathcal{F}^L_n=\mathcal{F}^L_0 + i\mathcal {D} \mathcal{F}^L_0 + i\mathcal {D} \mathcal{F}^L_1 + \dots + i\mathcal {D} \mathcal{F}^L_{n-1} \ . \end{aligned}$$
(A.1)

If we assume that \(n<L-1\), the second recurrence equation gives

$$\begin{aligned} \mathcal {D} \mathcal{F}^L_n=\left( {\begin{array}{c}n\\ 0\end{array}}\right) \mathcal {D} \mathcal{F}^L_0+\left( {\begin{array}{c}n\\ 1\end{array}}\right) \frac{i\mathcal {D}^2}{2!} \mathcal{F}^L_0+\dots =\sum _{j=0}^n{\left( {\begin{array}{c}n\\ j\end{array}}\right) \frac{i^j \mathcal {D}^{j+1}}{(j+1)!} \mathcal{F}^L_0} \ . \end{aligned}$$
(A.2)

Therefore we need to sum the series

$$\begin{aligned} \sum _{j=0}^{n-1}{i\mathcal {D} \mathcal{F}^L_j}=\sum _{j=0}^{n-1}{\sum _{k=0}^j{\left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{i^{k+1} \mathcal {D}^{k+1}}{(k+1)!} \mathcal{F}^L_0}} \ . \end{aligned}$$
(A.3)

As a first step, we can commute the two sums as \(\sum _{j=0}^{n-1}{\sum _{k=0}^j{}}=\sum _{k=1}^{n-1}{\sum _{j=k}^{n-1}{}}+\sum _{j=0}^{n-1}{\delta _{k,0}}\), because the index j only appears in the limit of the sum and in the binomial coefficient, so it is easier to perform first the sum over j. The second term is easy to evaluate because we only have to calculate \(\sum _{j=0}^{n-1}{\left( {\begin{array}{c}j\\ 0\end{array}}\right) }=\left( {\begin{array}{c}n\\ 1\end{array}}\right)\). The sum over j of the first term can be computed using the properties of the binomial coefficients \(\sum _{j=k}^{n-1}{\left( {\begin{array}{c}j\\ k\end{array}}\right) } = \left( {\begin{array}{c}n-1+1\\ k+1\end{array}}\right)\). The whole sum can thus be rewritten as

$$\begin{aligned} \mathcal{F}^L_n=\mathcal{F}^L_0+\sum _{k=1}^{n}{\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{i^{k} \mathcal {D}^{k}}{k!} \mathcal{F}^L_0} = \sum _{k=0}^{n}{\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{i^{k} \mathcal {D}^{k}}{k!} \mathcal{F}^L_0} \ . \end{aligned}$$
(A.4)

This equation is true as long as \(n < L-1\). If we want to get an expression valid for \(n\ge L-1\), we have to take into account derivatives of d of order greater than or equal to L, which can be performed independently of the calculation we have already done, because

$$\begin{aligned} \mathcal {D}^{L+\alpha -1} \mathcal{F}^L_{j+1}=\frac{i}{L+\alpha } \mathcal{F}^L_j \frac{\partial ^{L+\alpha } d}{\partial \lambda ^{L+\alpha }} + \cdots \ , \end{aligned}$$

where the dots stand for the part that we have already taken into account. Therefore, the d-contribution to \(\mathcal {D}\mathcal{F}^L_M\) will be of the form

$$\begin{aligned} i\mathcal {D}\mathcal{F}^L_M&=\sum _{j=1}^{M-L+2}{\sum _{k=0}^{M+2-L-j}{\frac{i^{L+k-1}}{(L+k-1)!} \left( {\begin{array}{c}M-j\\ L+k-2\end{array}}\right) \mathcal {D}^{L+k-1} \mathcal{F}^L_j}} \\&=\sum _{j=1}^{M-L+2}{\sum _{k=0}^{M+2-L-j}{\frac{i^{L+k}}{(L+k)!} \left( {\begin{array}{c}M-j\\ L+k-2\end{array}}\right) \frac{\partial ^{L+k} d}{\partial \lambda ^{L+k}} \mathcal{F}^L_{j-1}}} \ , \end{aligned}$$

and the derivative of d can be calculated using Leibniz’s rule,

$$\begin{aligned} \left. \frac{\partial ^{L+k} d}{\partial \lambda ^{L+k}} \right| _\xi =\sum _{j=0}^{L+k}{\left( {\begin{array}{c}L+k\\ j\end{array}}\right) \frac{\partial ^{j} (\lambda -\xi )^L}{\partial \lambda ^{j}} \, \frac{\partial ^{L+k-j} (\lambda +\xi )^{-L}}{\partial \lambda ^{L+k-j}}} \ . \end{aligned}$$

Because we want to evaluate this expression at \(\lambda =\xi\), the only non-zero contribution comes from the term with L derivatives acting on \((\lambda - \xi )^L\). This implies

$$\begin{aligned} \left. \frac{\partial ^{L+k} d}{\partial \lambda ^{L+k}} \right| _\xi =\left( {\begin{array}{c}L+k\\ L\end{array}}\right) \frac{\partial ^{L} (\lambda -\xi )^L}{\partial \lambda ^{L}} \, \frac{\partial ^{k} (\lambda +\xi )^{-L}}{\partial \lambda ^{k}}=\frac{(L+k)!}{k!} \, \frac{(L+k-1)!}{(L-1)!} \, \frac{(-1)^k}{i^{L+k}} \ . \end{aligned}$$

If we substitute that expression, we obtain

$$\begin{aligned} i\mathcal {D}\mathcal{F}^L_M =\sum _{j=1}^{M-L+2}{\sum _{k=0}^{M+2-L-j}{\left( {\begin{array}{c}M-j\\ L+k-2\end{array}}\right) \frac{(-1)^k (L+k-1)!}{(L-1)! k!} \mathcal{F}^L_{j-1}}} \ . \end{aligned}$$

After some algebra, the sum over k takes the form

$$\begin{aligned}&\sum _{k=0}^{m+2}{(-1)^k \left( {\begin{array}{c}L+m\\ L+k-2\end{array}}\right) \left( {\begin{array}{c}L+k-1\\ k\end{array}}\right) }=\frac{(L+m)!}{(L-1)!} \sum _{k=0}^{m+2}{\frac{(L+k-1)!}{(L+k-2)!} \frac{(-1)^k}{(m-k+2)! k!}} \\&=\frac{(L+m)!}{(L-1)! (m+2)!} \sum _{k=0}^{m+2}{\left[ (-1)^k (L-1) \left( {\begin{array}{c}m+2\\ k\end{array}}\right) +(-1)^k k\left( {\begin{array}{c}m+2\\ k\end{array}}\right) \right] } \ , \end{aligned}$$

where \(m=M-L-j\). Properties of the binomial coefficients say that the first sum is zero (unless there is a single term, that is, if \(m+2=0\)) and the second sum is also zero (except if there are two terms, so that \(m+2=1\)). Then, the total contribution of these terms will amount to

$$\begin{aligned}&\sum _{M=L-1}^{n-1}{i\mathcal {D}\mathcal{F}^L_M}=\sum _{M=L-1}^{n-1}{\sum _{j=1}^{M-L+2}}{\frac{(M-j)!}{(L-1)! (M-L-j+2)!}} \nonumber \\&\times \big [ (L-1)\delta _{M-L-j+2,0} - (M-L-j+2) \delta _{M-L-j+2,1}) \big ] \mathcal{F}^L_{j-1} \ , \end{aligned}$$
(A.5)

which telescopes, so that

$$\begin{aligned} \sum _{M=L-1}^{n-1}{i\mathcal {D}\mathcal{F}^L_M} = \mathcal{F}^L_{n-L} \ . \end{aligned}$$
(A.6)

Therefore, the most general form of the correlation function \(\mathcal{F}^L_n\) is

$$\begin{aligned} \mathcal{F}^L_n=\sum _{k=0}^{n}{\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{i^{k} \mathcal {D}^{k}}{k!} \mathcal{F}^L_0}+\theta (n-L) \mathcal{F}^L_{n-L} \ . \end{aligned}$$
(A.7)

where \(\theta (x)\) is the Heaviside step function, with \(\theta (x)=0\) if \(x<0\) and \(\theta (x)=1\) if \(x \ge 0\).

B Extension to SL(2) and SU(1|1) Sectors

Along most of this article, we have considered the SU(2) spin 1/2 homogeneous Heisenberg spin chain. The whole analysis that we have presented relies on the commutation relations of the elements of the monodromy matrix, (2.19), (2.20) and (2.21), the explicit form of the eigenvalues \(a(\lambda )\) and \(d(\lambda )\), and the S-matrix (and thus the Bethe equations). In this appendix, we want to give a taste of how the computations change for spin chains with symmetries SL(2) and SU(1|1).

1.1 B.1 SL(2) Sector

The case of the SL(2) spin chain seems at first sight rather similar to the SU(2) chain, because the commutation relationships between \((A+D)\) and B are the same in both cases. However, the eigenvalues a and d are exchanged,

$$\begin{aligned} a_{SL(2)}(\lambda )=d_{SU(2)}(\lambda ) \ , \quad d_{SL(2)}(\lambda )=a_{SU(2)}(\lambda )=1 \ . \end{aligned}$$
(B.1)

Fortunately, this does not prevent us from repeating the analysis that we have presented in Section 4.3 to obtain for instance a set of recurrence equations for correlation functions with two spin operators, like (4.39) and (4.52). The derivation is just the same as in that section, but keeping terms in a rather than terms in d. The final result is

$$\begin{aligned} \mathcal{F}^{L,(-1)}_{n+1}(\alpha )&\!=\! \big [1\!+\!a(\xi \!+\!\alpha )\!-\!i\left. \frac{\partial ^{} a}{\partial \lambda ^{}} \right| _{\xi +\alpha } \big ] \mathcal{F}^{L,(-1)}_n (\alpha ) + i\big [ a(\xi +\alpha )-1 \big ] \mathcal {D} \mathcal{F}^{L,(-1)}_n (\alpha ) \ , \nonumber \\ \mathcal {D}^m \mathcal{F}^{L,(-1)}_{n+1} (\alpha )&=\left[ 1+a(\xi +\alpha ) \right] \mathcal {D}^m \mathcal{F}^{L,(-1)}_{n} (\alpha ) - \frac{i}{m+1} \frac{\partial ^{m+1} a}{\partial \alpha ^{m+1}} \mathcal{F}^{L,(-1)}_{n} (\alpha ) \nonumber \\&+\frac{i}{m+1} \big [ a(\xi +\alpha ) -1 \big ] \mathcal {D}^{m+1} \mathcal{F}^{L,(-1)}_{n} (\alpha ) \ , \\ \mathcal {D}^m \mathcal{F}^{L,(-1)}_{0} (\alpha )&=\frac{\partial ^{m} \mathcal{F}^{L,(-1)}_{0} (\alpha )}{\partial \alpha ^{m}} \ , \nonumber \end{aligned}$$
(B.2)

where the \((-1)\) superindex reminds that now we are calculating the correlation function in a SL(2) spin chain. Finally, as in the SU(2) sector,

$$\begin{aligned} \mathcal{F}^{L,(-1)}_n =\sum _{k=0}^{n}{\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{(-i)^{k} \mathcal {D}^{k}}{k!} \mathcal{F}^{L,(-1)}_0}+\theta (n-L) \mathcal{F}^{L,(-1)}_{n-L} \ . \end{aligned}$$
(B.3)

1.2 B.2 SU(1|1) Sector

The case of a SU(1|1) spin chain is slightly more complex to handle because of the grading of the algebra. However, the evaluation of correlation functions turns out to be simpler than in the SU(2) and SL(2) sectors. The commutation relations are given by [47],

$$\begin{aligned} B(\mu ) B(\lambda )&=-\frac{\mu -\lambda +i}{\mu -\lambda -i} B(\lambda ) B(\mu ) \ , \nonumber \\ A (\mu ) B(\lambda )&=\left( 1+\frac{i}{\mu -\lambda } \right) B(\lambda ) A(\mu ) +\frac{i}{\mu -\lambda } B(\mu ) A (\lambda ) \ , \nonumber \\ D (\mu ) B(\lambda )&=\left( 1+\frac{i}{\mu -\lambda } \right) B(\lambda ) D(\mu ) +\frac{i}{\mu -\lambda } B(\mu ) D (\lambda ) \ , \nonumber \\ C(\lambda ) A (\mu )&=\left( 1+\frac{i}{\lambda -\mu } \right) A(\mu ) C(\lambda ) -\frac{i}{\lambda -\mu } A (\lambda ) C(\mu ) \ , \nonumber \\ C(\lambda ) D (\mu )&=\left( 1+\frac{i}{\lambda -\mu } \right) D(\mu ) C(\lambda ) -\frac{i}{\lambda -\mu } D (\lambda ) C(\mu ) \ . \end{aligned}$$
(B.4)

These commutation relations present some differences with respect to their SU(2) counterparts. The most important one is that they have the same form both for A and D. Another important difference is that the transfer matrix has to be graded and thus new we have \(T(\lambda )=A(\lambda )-D(\lambda )\) instead of \(A(\lambda )+D(\lambda )\). On the contrary, the form of the functions a and d does not change.

We can now follow Section 4.3 and proceed to find the commutation relations between the transfer matrix and the C operators in the limit where the rapidities are equal. We obtain

$$\begin{aligned}&\lim _{\beta \rightarrow \alpha } C(\alpha ) (A-D)(\beta )=\lim _{\beta \rightarrow \alpha } \frac{\alpha -\beta +i}{\alpha -\beta } (A-D)(\beta ) C(\alpha )-\frac{i}{\alpha -\beta } (A-D)(\alpha ) C(\beta ) \nonumber \\&=(A-D)(\alpha ) C(\alpha ) +i \left[ (A-D)(\alpha ) \left. \frac{\partial ^{} C(\lambda )}{\partial \lambda ^{}} \right| _{\lambda =\alpha } - \left. \frac{\partial ^{} (A-D)(\lambda )}{\partial \lambda ^{}} \right| _{\lambda =\alpha } C(\alpha ) \right] \ . \end{aligned}$$
(B.5)

We can also calculate the derivatives and thus the recurrence relations become

$$\begin{aligned} \mathcal{F}^{L,(0)}_{n+1} (\alpha )&=(1-d+i\partial d) \mathcal{F}^{L,(0)}_n (\alpha ) +i (1-d) \mathcal{D} \mathcal{F}^{L,(0)}_n (\alpha ) \nonumber \ , \\ \mathcal{D}^m \mathcal{F}^{L,(0)}_{n+1} (\alpha )&= (1-d) \mathcal{D}^m \mathcal{F}^{L,(0)}_n (\alpha ) \nonumber \\&+\frac{i}{m+1} \left[ (1-d) \mathcal{D}^{m+1} \mathcal{F}^{L,(0)}_n (\alpha ) +\frac{\partial ^{m+1} d}{\partial \alpha ^{m+1}} \mathcal{F}^{L,(0)}_n (\alpha ) \right] \nonumber \ , \\ \mathcal{D}^m \mathcal{F}^{L,(0)}_0 (\alpha )&=\frac{\partial ^{m} \mathcal{F}^{L,(0)}_0 (\alpha )}{\partial \alpha ^{m}} \ , \end{aligned}$$
(B.6)

where the (0) superindex states that now we are calculating a correlation function in the case of an SU(1|1) spin chain, and where, as usual \(d=d(\xi +\alpha )\) and \(\partial d=\left. \frac{\partial ^{} d(\lambda )}{\partial \lambda ^{}} \right| _{\lambda =\xi +\alpha }\). These recurrence equations can again be written in terms of some starting condition corresponding to \(n=0\), using

$$\begin{aligned} \mathcal{F}^{L,(0)}_n=\sum _{k=0}^{n}{\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{i^{k} \mathcal {D}^{k}}{k!} \mathcal{F}^{L,(0)}_0} \ , \end{aligned}$$
(B.7)

provided we keep \(n<L-1\).

C Correlation Functions Involving States with Three Magnons

Computing correlation functions using the ABA becomes a challenge when the number of magnons increases. In this appendix, we give a taste of how the complexity increases for the case of correlations functions involving states with three magnons.

There are four non-vanishing correlation functions whose most populated state contains three magnons. The first one is just the scalar product \(\left\langle \lambda _1 ,\lambda _2 ,\lambda _3 | \mu _1 ,\mu _2 ,\mu _3 \right\rangle\) and can be directly calculated using the Gaudin formula (2.38). The second one is the form factor of a single spin operator, \(\left\langle \lambda _1 ,\lambda _2 \left| \sigma ^+_k \right| \mu _1 ,\mu _2 ,\mu _3 \right\rangle\), which can be evaluated in a straightforward extension of the computation of \(\left\langle \lambda \left| \sigma ^+_k \right| \mu _1 \mu _2 \right\rangle\) in Section 4.2. The third kind of correlation function involving three magnons is \(\left\langle \lambda \left| \sigma ^+_k \sigma ^+_l \right| \mu _1 \mu _2 \mu _3 \right\rangle\), and the fourth one is \(\left\langle 0 \left| \sigma ^+_k \sigma ^+_l \sigma ^+_m \right| \mu _1 \mu _2 \mu _3 \right\rangle\). These last two types of correlators are the ones that we will consider in this appendix. We will start studying the third one (the one that involves two spin operators), and along the computation we will find that it involves correlation functions of the form \(\left\langle 0 \left| \sigma ^+_k \sigma ^+_{k+1} \sigma ^+_{k+n+2} \right| \mu _1 \mu _2 \mu _3 \right\rangle\), which are a particular case of the fourth type of correlator.

We will start by writing the problem in terms of operators of the monodromy matrix using (2.32),

$$\begin{aligned} \langle \lambda |\sigma ^+_k \sigma ^+_l |\mu _1 \mu _2 \mu _3\rangle = \left\langle 0 \left| C(\lambda )(A+D)^{k-1} (\xi ) C(\xi ) (A+D)^{n} (\xi ) C(\xi ) (A+D)^{L-l} (\xi ) \right| \mu _1 \mu _2 \mu _3 \right\rangle \ , \end{aligned}$$
(C.1)

where, as before, \(n=L+l-k-1\). The factor \((A+D)^{k-1}\) acts on \(C(\lambda )\) to give \(e^{-ip_\lambda (k-1)}\), and the factor \((A+D)^{L-l}\) acts on the three-magnon state to give \(e^{-i(p_1+p_2+p_3)\cdot (L-l)}=e^{i(p_1+p_2+p_3)l}\), where we have used the periodicity condition for the Bethe roots. Therefore, our main problem will be to find the correlation function

$$\begin{aligned} \mathcal{H}^L_{n}(\alpha )=\left\langle 0 \left| C(\lambda ) C(\xi +\alpha ) (A+D)^n (\xi ) C(\xi ) B(\mu _1) B(\mu _2) B(\mu _3) \right| 0 \right\rangle \ . \end{aligned}$$
(C.2)

Following the procedure that we have constructed along the article, this can be done by relating \(\mathcal{H}^L_{n+1}(\alpha )\) to \(\mathcal{H}^L_{n}(\alpha )\). In order to do this, let us start by introducing

$$\begin{aligned} \mathcal{H}^L_{n+1} (\lambda ,\alpha , \delta )=\lim _{\beta \rightarrow \alpha } \left\langle 0 \left| C(\lambda ) C(\xi +\alpha ) (A+D)(\xi +\beta ) \mathcal{O} (\delta ) \right| 0 \right\rangle \ . \end{aligned}$$
(C.3)

Now we just need to apply the commutation relations (2.20) two times in each step, which gives

$$\begin{aligned}&\mathcal{H}^L_{n+1} (\lambda ,\alpha , \delta ) = \lim _{\beta \rightarrow \alpha } \{ [ 1+d(\xi +\beta ) ] \mathcal{H}^L_{n} (\lambda ,\alpha , \delta ) \nonumber \\&-\frac{i}{\lambda -\xi -\beta } \left[ (d(\xi +\beta )-1) \mathcal{H}^L_{n} (\lambda ,\alpha , \delta )-(d(\lambda )-1) \mathcal{H}^L_{n} (\xi +\beta ,\alpha , \delta ) \right] \nonumber \\&-\frac{i}{\alpha -\beta } \left[ (d(\xi +\beta ) -1) \mathcal{H}^L_{n} (\lambda ,\alpha , \delta ) -(d(\xi +\alpha )-1) \mathcal{H}^L_{n} (\lambda ,\beta , \delta ) \right] \nonumber \\&+\frac{i}{\alpha -\beta } \ \frac{i}{\lambda -\xi -\beta } \left[ (d( \xi +\beta )+1) \mathcal{H}^L_{n} (\lambda ,\alpha , \delta ) -(d(\lambda )+1) \mathcal{H}^L_{n} (\xi +\beta ,\alpha , \delta ) \right] \nonumber \\&-\frac{i}{\alpha -\beta } \ \frac{i}{\lambda -\xi -\alpha } \left[ (d( \xi +\alpha )+1) \mathcal{H}^L_{n} (\lambda ,\beta , \delta ) -(d(\lambda )+1) \mathcal{H}^L_{n} (\xi +\beta ,\alpha , \delta ) \right] \} \ . \end{aligned}$$
(C.4)

Taking the limit and applying the Bethe equation for the rapidity \(\lambda\) we obtain

$$\begin{aligned}&\mathcal{H}^L_{n+1} (\lambda ,\alpha , \delta )=\Big ( 1+d+i\partial d+\frac{\partial d-i(d-1)}{\lambda -\xi -\alpha }+\frac{d+1}{(\lambda -\xi -\alpha )^2} \Big ) \mathcal{H}^L_{n} (\lambda ,\alpha , \delta ) \nonumber \\&+\Big [ i(1-d)-\frac{d+1}{\lambda -\xi -\alpha } \Big ] \frac{\partial ^{} \mathcal{H}^L_{n} (\lambda ,\alpha , \delta )}{\partial \alpha ^{}} -\frac{2}{(\lambda -\xi -\alpha )^2} \mathcal{H}^L_{n} (\xi +\alpha ,\alpha , \delta ) \ , \end{aligned}$$
(C.5)

where, as before, \(d=d(\xi +\alpha )\) and \(\partial d=\left. \frac{\partial ^{} d}{\partial \lambda ^{}} \right| _{\xi +\alpha }\). The next step of the calculation is a little bit more involved than in the previous cases because, according to (C.5), information about both functions \(\mathcal{H}^L_{n} (\lambda ,\alpha , \delta )\) and \(\mathcal{H}^L_{n+1} (\xi +\alpha ,\alpha , \delta )\) is now needed. This will make the computation slightly more difficult, but still manageable. In the expressions below, we will define \(\mathcal{H}^L_{n+1} (\alpha +\xi ,\alpha , \delta )=\hat{\mathcal{H}}^L_{n+1} (\alpha ,\alpha , \delta )\) for convenience. This function \(\hat{\mathcal{H}}\) has a nice interpretation because

$$\begin{aligned} \left\langle 0 \left| \sigma ^+_k \sigma ^+_{k+1} \sigma ^+_{k+n+2} \right| \mu _1 \mu _2 \mu _3 \right\rangle&=\left\langle 0 \left| C(\xi ) C(\xi ) (A+D)^{n} (\xi ) C(\xi ) (A+D)^{L-n-k-2} (\xi ) \right| \mu _1 \mu _2 \mu _3 \right\rangle \nonumber \\&=\hat{\mathcal{H}}^L_{n} e^{i(p_1+p_2+p_3)(n+k+2)} \ . \end{aligned}$$
(C.6)

Our starting point is thus to find the recursive equation for \(\hat{\mathcal{H}}\). This can be obtained setting \(\lambda =\gamma +\xi\) in expression (C.4) and taking the limit \(\gamma \rightarrow \alpha\),

$$\begin{aligned}&\hat{\mathcal{H}}^L_{n+1} (\alpha ,\alpha , \delta )=\lim _{\beta \rightarrow \alpha }\frac{1}{\beta -\alpha } \Big [ (1+d) \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_{n} (\lambda ,\alpha , \delta )}{\partial \lambda ^{}} \right| _{\lambda =\alpha } \!\! - (1+d) \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_{n} (\alpha ,\lambda , \delta )}{\partial \lambda ^{}} \right| _{\lambda =\alpha } \Big ] \nonumber \\&+ \big (1+d+2i\partial d-\frac{1}{2} \partial ^2 d \big ) \, \hat{\mathcal{H}}^L_{n} (\alpha ,\alpha , \delta ) + \big [ 2i(1-d) +\partial d \big ] \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_{n} (\lambda ,\alpha , \delta )}{\partial \lambda ^{}} \right| _{\lambda =\alpha } \nonumber \\&+ \frac{1+d}{2} \left. \frac{\partial ^{2} \hat{\mathcal{H}}^L_{n} (\lambda ,\alpha , \delta )}{\partial \lambda ^{2}} \right| _{\lambda =\alpha }-(1+d) \left. \frac{\partial ^2 \hat{\mathcal{H}}^L_{n} (\lambda _1 ,\lambda _2, \delta )}{\partial \lambda _1 \partial \lambda _2} \right| _{\begin{array}{c} \lambda _{1} = \alpha \\ \lambda _{2} = \alpha \end{array}} \ . \end{aligned}$$
(C.7)

Note that, although the first term in this expression seems divergent, it vanishes because of the commutator of two C operators vanishes, which makes the two derivatives equal. However, this way of calculating recursively \(\hat{\mathcal{H}} (\alpha , \alpha , \delta )\) is going to create more problem than it solves, as it will imply calculating the recurrence equation of the derivative of \(\hat{\mathcal{H}} (\lambda ,\mu )\) with respect to either the first or the second argument. Therefore, we are going to present the recursion relation of \(\hat{\mathcal{H}} (\beta , \alpha , \delta )\) but without taking the limit \(\beta \rightarrow \alpha\). To obtain this recurrence relation, we only need to substitute \(\lambda =\xi +\beta\) in (C.5), but without imposing \(d(\lambda )=1\),

$$\begin{aligned}&\hat{\mathcal{H}}^L_{n+1} (\beta ,\alpha , \delta )=\Big ( 1+d+i\partial d+\frac{\partial d-i(d-1)}{\beta -\alpha }+\frac{d+1}{(\beta -\alpha )^2} \Big ) \hat{\mathcal{H}}^L_{n} (\beta ,\alpha , \delta ) \nonumber \\&+\Big [ i(1-d)-\frac{d+1}{\beta -\alpha } \Big ] \frac{\partial ^{} \hat{\mathcal{H}}^L_{n} (\beta ,\alpha , \delta )}{\partial \alpha ^{}} +\left[ \frac{i(d'-1)}{\beta -\alpha } -\frac{d'+1}{(\beta -\alpha )^2} \right] \lim _{\gamma \rightarrow \alpha } \hat{\mathcal{H}}^L_{n} (\gamma ,\alpha , \delta ) \ , \end{aligned}$$
(C.8)

where \(d'=d(\xi +\beta )\). Note that if we take \(\beta \rightarrow \alpha\) (C.8) gives (C.7). Now in the recurrence relation we need to include \(\lim _{\gamma \rightarrow \alpha } \hat{\mathcal{H}}^L_{n} (\gamma ,\alpha , \delta )\), but this quantity is obviously known once we know \(\hat{\mathcal{H}}^L_{n} (\beta ,\alpha , \delta )\).

We also need a recurrence equation for the derivatives. For the case of \(\mathcal{H}_{n}\) we have

$$\begin{aligned}&\mathcal{D}^n \mathcal{H}^L_{m+1} (\lambda ,\alpha , \delta )=(1+d) \mathcal{D}^n \mathcal{H}^L_{m} -\frac{i}{\lambda -\xi -\alpha } \left[ (d-1) \mathcal{D}^n \mathcal{H}^L_{m} \right] \nonumber \\&+\frac{i}{n+1} (\partial ^{n+1} d) \mathcal{H}^L_{m}+(1-d)\frac{i}{n+1} \mathcal{D}^{n+1} \mathcal{H}^L_{m} \nonumber \\&+\sum _{k=0}^n \sum _{l=0}^{k+1}{\frac{n!}{(n-k)! (k+1-l)!} \frac{1}{(\lambda -\xi -\alpha )^{l+1}} \left[ \partial ^{k+1-l} (d+1) \mathcal{D}^{n-k} \mathcal{H}^L_{m} \right. } \nonumber \\&\left. -(d(\lambda )+1) \mathcal{D}^{n-k}_1 \mathcal{D}^{k+1-l}_2 \hat{\mathcal{H}}^L_{m} \right] \nonumber \\&-\sum _{k=0}^n{\sum _{l=0}^{n-k}{ \frac{n!}{(k+1)! (n-l-k)!} \frac{1}{(\lambda -\xi -\alpha )^{l+1}} \left[ \partial ^{n-k-l}(d+1) \mathcal{D}^{k+1} \mathcal{H}^L_{m} \right. }} \nonumber \\&\left. -(d(\lambda ) +1) \mathcal{D}^{n-k-l}_1 \mathcal{D}^{k+1}_2 \hat{\mathcal{H}}^L_{m} \right] \ . \end{aligned}$$
(C.9)

The last two sums cancel themselves except for the terms with \(k=n\). Therefore

$$\begin{aligned}&\mathcal{D}^n \mathcal{H}^L_{m+1} (\lambda ,\alpha , \delta )=(1+d) \mathcal{D}^n \mathcal{H}^L_{m} -\frac{i}{\lambda -\xi -\alpha } (d-1) \mathcal{D}^n \mathcal{H}^L_{m} \nonumber \\&+\frac{i}{n+1} (\partial ^{n+1} d) \mathcal{H}^L_{m}+(1-d)\frac{i}{n+1} \mathcal{D}^{n+1} \mathcal{H}^L_{m} \nonumber \\&+\sum _{l=0}^{n+1}{\frac{n!}{(n+1-l)!} \frac{1}{(\lambda -\xi -\alpha )^{l+1}} \left[ \partial ^{n+1-l} (d+1) \mathcal{H}^L_{m} - 2 \, \mathcal{D}^{n+1-l} \hat{\mathcal{H}}^L_{m} \right] } \nonumber \\&-\frac{1}{n+1} \frac{1}{(\lambda -\xi -\alpha )} \left[ (d+1) \mathcal{D}^{n+1} \mathcal{H}^L_{m} - 2 \, \mathcal{D}^{n+1} \hat{\mathcal{H}}^L_{m} \right] \ , \end{aligned}$$
(C.10)

where we have used that \(d(\lambda )=1\). In a similar way, we can obtain an expression for the derivatives of \(\hat{\mathcal{H}}\),

$$\begin{aligned}&\mathcal{D}^n \hat{\mathcal{H}}^L_{m+1} (\beta ,\alpha , \delta )=(1+d) \mathcal{D}^n \hat{\mathcal{H}}^L_{m} -\frac{i}{\beta -\alpha } (d-1) \mathcal{D}^n \hat{\mathcal{H}}^L_{m} \nonumber \\&+\frac{i}{n+1} (\partial ^{n+1} d) \hat{\mathcal{H}}^L_{m}+(1-d)\frac{i}{n+1} \mathcal{D}^{n+1} \hat{\mathcal{H}}^L_{m} +\frac{i}{\beta -\alpha } (d' -1) \lim _{\gamma \rightarrow \alpha } \frac{\partial ^{n} \hat{\mathcal{H}}^L_{n} (\gamma ,\alpha , \delta )}{\partial \alpha ^{n}} \nonumber \\&+\sum _{l=0}^{n+1}{\frac{n!}{(n+1-l)!} \frac{1}{(\beta -\alpha )^{l+1}} \left[ \partial ^{n+1-l} (d+1) \hat{\mathcal{H}}^L_{m} - (d'+1)\, \lim _{\gamma \rightarrow \alpha } \frac{\partial ^{n+1-l} \hat{\mathcal{H}}^L_{m} (\gamma ,\alpha ,\delta )}{\partial \alpha ^{n+1-l}} \right] } \nonumber \\&-\frac{1}{n+1} \frac{1}{(\beta -\alpha )} \left[ (d+1) \mathcal{D}^{n+1} \hat{\mathcal{H}}^L_{m} - (d'+1) \, \lim _{\gamma \rightarrow \alpha } \frac{\partial ^{n+1} \hat{\mathcal{H}}^L_{m} (\gamma ,\alpha ,\delta )}{\partial \alpha ^{n+1}} \right] \ . \end{aligned}$$
(C.11)

At this point the problem is, at least formally, solved. We have found the recursion relation for \(\hat{\mathcal{H}}\) and its derivatives, with \(\left\langle 0 \left| C(\xi +\beta ) C(\xi +\alpha ) (\xi ) C(\xi ) \right| \mu _1 \mu _2 \mu _3 \right\rangle =\hat{\mathcal{H}}^L_{n} (\beta , \alpha )\) as the initial condition. These functions can then be substituted in the recursion relation for \(\mathcal H\) and thus we can obtain the desired correlation function. However, we are not going to present the general form for the correlation function \(\mathcal{H}^L_n\) as a function of \(\mathcal{H}^L_0\), \(\hat{\mathcal{H}}^L_0\) and their derivatives, because it becomes rather lengthy. This is because when we substitute the expression for the derivatives, the recursion relations turn out to depend on all the \(\mathcal{H}_i\) with \(0\le i\le n\), even after we take the limit \(\alpha \rightarrow 0\). Instead, we can present the case of correlation functions with n small, to exhibit the nested procedure to write the result in terms of the initial functions \(\mathcal{H}^L_0\) and \(\hat{\mathcal{H}}^L_0\). In particular, we are going to consider the first three functions, with \(n=1\), \(n=2\) and \(n=3\). Thus, we can safely assume that \(n<L-1\) so that all the d and \(\partial ^k d\) factors can be set to zero in the limit \(\alpha \rightarrow 0\). The first of these correlation functions is given by

$$\begin{aligned} \mathcal{H}^L_{1} = \big ( 1+ i c(\lambda ) + c(\lambda )^2 \big ) \, \mathcal{H}^L_0 + \big ( i-c(\lambda ) \big ) \left. \frac{\partial ^{} \mathcal{H}^L_0 (\lambda ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} - 2 c(\lambda )^2 \, \hat{\mathcal{H}}^L_0 \ , \end{aligned}$$
(C.12)

where, for convenience, we have defined \(c(\lambda ) = 1/(\lambda -\xi )\). For simplicity, if no arguments of these functions are given, \(\mathcal{H}^L (\lambda , 0)\) and \(\hat{\mathcal{H}}^L (0, 0)\) must be understood. The last step of the computation reduces to calculating some initial conditions, which now are

$$\begin{aligned} \mathcal{H}^L_0 (\lambda , \alpha )&=\left\langle 0 \left| C(\lambda ) C(\xi +\alpha ) C(\xi ) B(\mu _1) B(\mu _2) B(\mu _3) \right| 0 \right\rangle \ , \end{aligned}$$
(C.13)
$$\begin{aligned} \hat{\mathcal{H}}^L_0 (\alpha , \beta )&= \mathcal{H}^L_0 (\xi +\alpha , \beta ) \ . \end{aligned}$$
(C.14)

These functions can be easily computed using (2.37). However, we are not going to present the explicit expression for these scalar products because of its length and because we want to show the way to solve the recurrence relation rather than obtaining the explicit value of the correlation function.

The functional dependence of \(\mathcal{H}_1\) on \(\mathcal{H}_0\) is repeated for a given value of n and the lower correlator. That is, in the limit \(\alpha \rightarrow 0\) the recurrence relation for \(\mathcal{H}^L_{n+1}\) is given by

$$\begin{aligned} \mathcal{H}^L_{n+1} = \big ( 1+ i c(\lambda ) + c(\lambda )^2 \big ) \mathcal{H}^L_n + \big ( i-c(\lambda ) \big ) \mathcal{D} \mathcal{H}^L_n - 2 c(\lambda )^2 \hat{\mathcal{H}}_n \, \ . \end{aligned}$$
(C.15)

Therefore, for the second correlation function, we have

$$\begin{aligned} \mathcal{H}^L_{2} = \big ( 1+ i c(\lambda ) + c(\lambda )^2 \big ) \mathcal{H}^L_1 + \big ( i-c(\lambda ) \big ) \mathcal{D} \mathcal{H}^L_1 - 2 c(\lambda )^2 \hat{\mathcal{H}}_1 \ . \end{aligned}$$
(C.16)

As we already know \(\mathcal{H}^L_1\), it only remains to find the other two functions entering (C.16). This can be done using the equations that we have obtained along this appendix. We get

$$\begin{aligned} \mathcal{D} \mathcal{H}^L_{1}&=c(\lambda )^3 \mathcal{H}^L_0+(1+ic(\lambda )) \left. \frac{\partial ^{} \mathcal{H}^L_0 (\lambda ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0}+\frac{i(1+ic(\lambda ))}{2} \left. \frac{\partial ^{2} \mathcal{H}^L_0 (\lambda ,\alpha )}{\partial \alpha ^{2}} \right| _{\alpha =0} \nonumber \\&-2c(\lambda )^3 \hat{\mathcal{H}}^L_0 -2c(\lambda )^2 \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} \ , \end{aligned}$$
(C.17)
$$\begin{aligned} \hat{\mathcal{H}}^L_1 (\beta , 0)&= \Big ( 1+\frac{i}{\beta }+\frac{1}{\beta ^2} \Big ) \hat{\mathcal{H}}^L_0 (\beta , 0) +\Big [ i-\frac{1}{\beta } \Big ] \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (\beta ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0}-\left[ \frac{i}{\beta } +\frac{1}{\beta ^2} \right] \hat{\mathcal{H}}^L_{0} \ , \end{aligned}$$
(C.18)
$$\begin{aligned} \hat{\mathcal{H}}^L_1&= \hat{\mathcal{H}}^L_{0} +2i \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} +\frac{1}{2} \left. \frac{\partial ^{2} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{2}} \right| _{\alpha =0}-\left. \frac{ \partial ^2 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta } \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} \ , \end{aligned}$$
(C.19)

which reduce again to some dependence on the initial conditions we have described before.

An identical computation can be done for \(\mathcal{H}^L_{3}\),

$$\begin{aligned} \mathcal{H}^L_{3} = \big ( 1+ i c(\lambda ) + c(\lambda )^2 \big ) \mathcal{H}^L_2 + \big ( i-c(\lambda ) \big ) \mathcal{D} \mathcal{H}^L_2 - 2 c(\lambda )^2 \hat{\mathcal{H}}_2 \ . \end{aligned}$$
(C.20)

Now, besides \(\mathcal{H}^L_{2}\), that has been calculated just before, we need

$$\begin{aligned} \mathcal{D} \mathcal{H}^L_{2}&=c(\lambda )^3 \mathcal{H}^L_1+(1+ic(\lambda )) \mathcal{D} \mathcal{H}^L_{1}+\frac{i(1+ic(\lambda ))}{2} \mathcal{D}^ 2 \mathcal{H}^L_{1} \nonumber \\&-2c(\lambda )^2 \Big ( c(\lambda ) \hat{\mathcal{H}}^L_1 +\mathcal{D} \hat{\mathcal{H}}^L_{1} \Big ) \ , \end{aligned}$$
(C.21)
$$\begin{aligned} \mathcal{D}^2 \mathcal{H}^L_{1}&=2 c(\lambda )^4 \mathcal{H}^L_0+(1+ic(\lambda )) \left. \frac{\partial ^{2} \mathcal{H}^L_0 (\lambda ,\alpha )}{\partial \alpha ^{2}} \right| _{\alpha =0}+\frac{i(1+ic(\lambda ))}{3} \left. \frac{\partial ^{3} \mathcal{H}^L_0 (\lambda ,\alpha )}{\partial \alpha ^{3}} \right| _{\alpha =0} \nonumber \\&-4c(\lambda )^4 \hat{\mathcal{H}}^L_0 -4 c(\lambda )^3 \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} -2c(\lambda )^2 \left. \frac{\partial ^{2} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{2}} \right| _{\alpha =0} \ ,\end{aligned}$$
(C.22)
$$\begin{aligned} \mathcal{D} \hat{\mathcal{H}}^L_{1}&=\left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} + \frac{i}{2}\left. \frac{\partial ^{2} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{2}} \right| _{\alpha =0}+i\left. \frac{ \partial ^2 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta } \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} \nonumber \\&+ \frac{1}{3!} \left. \frac{\partial ^{3} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{3}} \right| _{\alpha =0} - \frac{1}{2} \left. \frac{ \partial ^3 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta ^ 2} \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} \ , \end{aligned}$$
(C.23)
$$\begin{aligned} \hat{\mathcal{H}}^L_{2}&=\hat{\mathcal{H}}^L_{0} +4i \left. \frac{\partial ^{} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{}} \right| _{\alpha =0} -4 \left. \frac{ \partial ^2 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta } \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}}+\frac{i}{2}\left. \frac{\partial ^{3} \hat{\mathcal{H}}^L_0 (0 ,\alpha )}{\partial \alpha ^{3}} \right| _{\alpha =0} \nonumber \\&- \frac{3i}{2} \left. \frac{ \partial ^3 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta ^2} \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} -\frac{1}{3!} \left. \frac{ \partial ^4 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha \partial \beta ^3} \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} +\frac{1}{2!^2} \left. \frac{ \partial ^4 \hat{\mathcal{H}}^L_0 (\alpha ,\beta )}{\partial \alpha ^2 \partial \beta ^2} \right| _{\begin{array}{c} \alpha =0 \\ \beta =0 \end{array}} \ . \end{aligned}$$
(C.24)

The cases with higher values of n can be obtained along similar lines.

To conclude our analysis, we will brief comment on the calculation of correlation functions \(\left\langle 0 \left| \sigma ^+_k \sigma ^+_l \sigma ^+_m \right| \{ \mu \} \right\rangle\), with general values of k, l and m. In this case, the value of n in \(\hat{\mathcal{H}}^L_n\) will be proportional to the separation of l and m. But it still remains to separate k from l. This last step can be solved using the tools from Section 4.3.3, because the problem in both cases is the same.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, R., Nieto, J.M. On Correlation Functions in the Coordinate and the Algebraic Bethe Ansatz. Int J Theor Phys 62, 264 (2023). https://doi.org/10.1007/s10773-023-05519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05519-1

Keywords

Navigation