Skip to main content
Log in

Threshold effects in a two-fermion system on an optical lattice

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a wide class of two-particle Schrödinger operators H(k) = H0(k) + V, k\(\mathbb{T}^d\), corresponding to a two-fermion system on a d-dimensional cubic integer lattice (d ≥ 1), we prove that for any value k\(\mathbb{T}^d\) of the quasimomentum, the discrete spectrum of H(k) below the lower threshold of the essential spectrum is a nonempty set if the following two conditions are satisfied. First, the two-particle operator H(0) corresponding to a zero quasimomentum has either an eigenvalue or a virtual level on the lower threshold of the essential spectrum. Second, the one-particle free (nonperturbed) Schrödinger operator in the coordinate representation generates a semigroup that preserves positivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Mattis, “The few-body problem on lattice,” Rev. Modern Phys., 58, 361–379 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. I. Mogilner, “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: Problems and results,” in: Many-Particle Hamiltonians: Spectra and Scattering (Adv. Sov. Math., Vol. 5, R. A. Milnos, ed.), Amer. Math. Soc., Providence, R. I. (1991), pp. 139–194.

    Article  Google Scholar 

  3. S. Albeverio, S. N. Lakaev, K. A. Makarov, and Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices,” Commun. Math. Phys., 262, 91–115 (2006); arXiv:math-ph/0501013v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin, “High-temperature superfluidity of fermionic atoms in optical lattices,” Phys. Rev. Lett., 89, 220407 (2002); arXiv:cond-mat/0204237v2 (2002).

    Article  ADS  Google Scholar 

  5. M. Lewenstein, L. Santos, M. A. Baranov, and H. Fehrmann, “Atomic Bose-Fermi mixtures in an optical lattice,” Phys. Rev. Lett., 92, 050401 (2004); arXiv:cond-mat/0306180v3 (2003).

    Article  ADS  Google Scholar 

  6. K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P. Buchler, and P. Zoller, “Repulsively bound atom pairs in an optical lattice,” Nature, 441, 853–856 (2006).

    Article  ADS  Google Scholar 

  7. V. Bach, W. de Siqueira Pedra, and S. N. Lakaev, “Bounds on the discrete spectrum of lattice Schrödinger operators,” J. Math. Phys., 59, 022109 (2017); arXiv:1709.02966v2 [math-ph] (2017).

    Article  ADS  Google Scholar 

  8. P. A. Faria da Veiga, L. Ioriatti, and M. O’Carroll, “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians,” Phys. Rev. E, 66, 016130 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. N. Lakaev, “Bound states and resonances of N-particle discrete Schrödinger operator,” Theor. Math. Phys., 91, 362–372 (1992).

    Article  Google Scholar 

  10. S. N. Lakaev and Sh. M. Tilavova, “Merging of eigenvalues and resonances of a two-particle Schrödinger operator,” Theor. Math. Phys., 101, 1320–1331 (1994).

    Article  Google Scholar 

  11. S. N. Lakaev and I. N. Bozorov, “The number of bound states of a one-particle Hamiltonian on a threedimensional lattice,” Theor. Math. Phys., 158, 360–376 (2009).

    Article  Google Scholar 

  12. S. N. Lakaev and Sh. U. Alladustov, “Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice,” Theor. Math. Phys., 178, 336–346 (2014).

    Article  Google Scholar 

  13. Zh. I. Abdullaev and S. N. Lakaev, “Asymptotics of the discrete spectrum of the three-particle Schrödinger difference operator on a lattice,” Theor. Math. Phys., 136, 1096–1109 (2003).

    Article  Google Scholar 

  14. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, “Schrödinger operators on lattices: The Efimov effect and discrete spectrum asymptotics,” Ann. Henri Poincaré, 5, 743–772 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Klaus and B. Simon, “Coupling constants thresholds in nonrelativistic quantum mechanics: I. Short-range two-body case,” Ann. Phys., 130, 251–281 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Albeverio, F. Gesztesy, and R. Høegh-Krohn, “The low energy expansion in nonrelativistic scattering theory,” Ann. Inst. H. Poincaré Sect. A, n.s., 37, 1–28 (1982).

    MathSciNet  MATH  Google Scholar 

  17. M. Klaus, “On the bound state of Schrödinger operators in one dimension,” Ann. Phys., 108, 288–300 (1977).

    Article  ADS  Google Scholar 

  18. B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions,” Ann. Phys., 97, 279–288 (1976).

    Article  ADS  Google Scholar 

  19. D. R. Yafaev, “On the virtual state of Schrödinger equation [in Russian],” Zap. Nauchn. Sem. LOMI, 51, 203–216 (1975).

    MATH  Google Scholar 

  20. A. V. Sobolev, “The Efimov effect: Discrete spectrum asymptotics,” Commun. Math. Phys., 156, 101–126 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Tamura, “The Efimov effect of three-body Schrödinger operators: Asymptotics for the number of negative eigenvalues,” Nagoya Math. J., 130, 55–83 (1993).

    Article  MathSciNet  Google Scholar 

  22. D. R. Yafaev, “On the theory of the discrete spectrum of the three-particle Schrödinger operator,” Math. USSRSb., 23, 535–559 (1974).

    MATH  Google Scholar 

  23. S. Albeverio, R. Høegh-Krohn, and T. T. Wu, “A class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior,” Phys. Lett. A, 83, 105–109 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Albeverio, S. N. Lakaev, and A. M. Khalkhujaev, “Number of eigenvalues of the three-particle Schrödinger operators on lattices,” Markov Process. Related Fields, 18, 387–420 (2012).

    MathSciNet  MATH  Google Scholar 

  25. S. N. Lakaev, “On Efimov’s effect in a system of three identical quantum particles,” Funct. Anal. Appl., 27, 166–175 (1993).

    Article  MathSciNet  Google Scholar 

  26. Yu. N. Ovchinnikov and I. M. Sigal, “Number of bound states of three-particle systems and Efimov’s effect,” Ann. Phys., 123, 274–295 (1989).

    Article  ADS  Google Scholar 

  27. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators, Acad. Press, New York (1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Lakaev.

Ethics declarations

Conflicts of interest. The authors declare no conflicts of interest.

Additional information

This research was supported by the Foundation for Basic Research of the Republic of Uzbekistan (Grant No. OTF4-66).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 2, pp. 251–268, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakaev, S.N., Abdukhakimov, S.H. Threshold effects in a two-fermion system on an optical lattice. Theor Math Phys 203, 648–663 (2020). https://doi.org/10.1134/S0040577920050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920050074

Keywords

Navigation