Skip to main content
Log in

The Darboux transformation for the Wadati–Konno–Ichikawa system

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on a conservation law, we construct a hodograph transformation for the Wadati–Konno–Ichikawa (WKI) equation, which implies that the WKI equation is equivalent to a modified WKI (mWKI) equation. Applying the Darboux transformation to the mWKI equation, we show that in both the focusing and defocusing cases, the mWKI equation admits an analytic bright soliton solution from the vacuum and the collisions of n solitons are elastic based on the asymptotic analysis. In addition, we find that the mWKI equation still admits the breather and rogue wave solutions, although a modulation instability does not exist for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  MATH  Google Scholar 

  2. V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. Tech. Phys., 9, 190–194 (1968).

    Article  ADS  Google Scholar 

  3. V. E. Zakharov and A. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media,” Sov. Phys. JETP, 34, 62–69 (1972).

    ADS  Google Scholar 

  4. M. J. Ablowitz, D. J. Kaup, A. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett., 30, 1262–1264 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Wadati, “The modified Korteweg–de Vries equation,” J. Phys. Soc. Japan, 34, 1289–1296 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Fokas and M. Ablowitz, “Inverse scattering transform for the Benjamin–Ono equation–a pivot to multidimensional problems,” Stud. Appl. Math., 68, 1–10 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Kaup and Y. Matsuno, “The inverse scattering transform for the Benjamin–Ono equation,” Stud. Appl. Math., 101, 73–98 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Kodama, M. J. Ablowitz, and J. Satsuma, “Direct and inverse scattering problems of the nonlinear intermediate long wave equation,” J. Math. Phys., 23, 564–576 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. S. Fokas and M. J. Ablowitz, “On the inverse scattering on the time-dependent Schrödinger equation and the associated Kadomtsev–Petviashvili equation,” Stud. Appl. Math., 69, 211–228 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation,” Phys. D, 3, 420–427 (1981).

    Article  MATH  Google Scholar 

  11. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-evolution equations of physical significance,” Phys. Rev. Lett., 31, 125–127 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems,” Stud. Appl. Math., 53, 249–315 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Wadati, K. Konno, and Y. H. Ichikawa, “New integrable nonlinear evolution equations,” J. Phys. Soc. Japan, 47, 1698–1700 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K. Konno and A. Jeffrey, “The loop soliton,” in: Advances in Nonlinear Waves (L. Debnath, ed.), Vol. 1, Pitman, London (1984), pp. 162–183.

    Google Scholar 

  15. M. Kruskal, “Nonlinear wave equations,” in: Dynamical Systems, Theory and Applications (Lect. Notes Phys., Vol. 38) (1975), pp. 310–354.

    Chapter  Google Scholar 

  16. T. Shimizu and M. Wadati, “A new integrable nonlinear evolution equation,” Progr. Theoret. Phys., 63, 808–820 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Wadati and K. Sogo, “Gauge transformations in soliton theory,” J. Phys. Soc. Japan, 52, 394–398 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Ishimori, “A relationship between the Ablowitz–Kaup–Newell–Segur and Wadati–Konno–Ichikawa schemes of the inverse scattering method,” J. Phys. Soc. Japan, 51, 3036–3041 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  19. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations, and their solutions,” J. Austral. Math. Soc. Ser. B, 25, 16–43 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Dubard and V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation,” Nat. Hazards Earth Sys. Sci., 11, 667–672 (2011).

    Article  ADS  Google Scholar 

  21. P. Dubard and V. Matveev, “Multi-rogue waves solutions: From the NLS to the KP-I equation,” Nonlinearity, 26, R93–R125 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B. Guo, L. Ling, and Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations,” Stud. Appl. Math., 130, 317–344 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Guo, Y. Zhang, S. Xu, Z. Wu, and J. He, “The higher order rogue wave solutions of the Gerdjikov–Ivanov equation,” Phys. Scripta, 89, 035501 (2014).

    Article  ADS  Google Scholar 

  24. S. Xu, J. He, and L. Wang, “The Darboux transformation of the derivative nonlinear Schrödinger equation,” J. Phys. A: Math. Theor., 44, 305203 (2011).

    Article  MATH  Google Scholar 

  25. Y. Zhang, L. Guo, J. He, and Z. Zhou, “Darboux transformation of the second–type derivative nonlinear Schrödinger equation,” Lett. Math. Phys., 105, 853–891 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y. Zhang, L. Guo, S. Xu, Z. Wu, and J. He, “The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation,” Commun. Nonlinear Sci. Numer. Simul., 19, 1706–1722 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Ohta and J. Yang, “Rogue waves in the Davey–Stewartson I equation,” Phys. Rev. E, 86, 036604 (2012).

    Article  ADS  Google Scholar 

  28. Y. Ohta, J. Yang, “Dynamics of rogue waves in the Davey–Stewartson II equation,” J. Phys. A: Math. Theor., 46, 105202 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N. Akhmediev, J. M. Soto-Crespo, N. Devine, and N. P. Hoffmann, “Rogue wave spectra of the Sasa–Satsuma equation,” Phys. D, 294, 37–42 (2015).

    Article  MathSciNet  Google Scholar 

  30. S. Chen, “Twisted rogue-wave pairs in the Sasa–Satsuma equation,” Phys. Rev. E, 88, 023202 (2013).

    Article  ADS  Google Scholar 

  31. F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz, “Vector rogue waves and baseband modulation instability in the defocusing regime,” Phys. Rev. Lett., 113, 034101 (2014).

    Article  ADS  Google Scholar 

  32. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic rogue waves,” Phys. Rev. Lett., 109, 044102 (2012).

    Article  ADS  Google Scholar 

  33. B.-L. Guo and L.-M. Ling, “Rogue wave, breathers, and bright-dark-rogue solutions for the coupled Schrödinger equations,” Chin. Phys. Lett., 28, 110202 (2011).

    Article  ADS  Google Scholar 

  34. G. Mu, Z. Qin, and R. Grimshaw, “Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation,” SIAM J. Appl. Math., 75, 1–20 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations,” Phys. Rev. E, 82, 026602 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,” Phys. Rev. E, 81, 046602 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Ankiewicz, Y. Wang, S. Wabnitz, and N. Akhmediev, “Extended nonlinear Schrödinger equation with higherorder odd and even terms and its rogue wave solutions,” Phys. Rev. E, 89, 012907 (2014).

    Article  ADS  Google Scholar 

  38. D. Qiu, J. He, Y. Zhang, and K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation,” Proc. Roy. Soc. A, 471, 20150236 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Qiu, Y. Zhang, and J. He, “The rogue wave solutions of a new (2+1)-dimensional equation,” Commun. Nonlinear Sci. Numer. Simul., 30, 307–315 (2016).

    Article  MathSciNet  Google Scholar 

  40. A. Chabchoub and N. Akhmediev, “Observation of rogue wave triplets in water waves,” Phys. Lett. A, 377, 2590–2593 (2013).

    Article  ADS  MATH  Google Scholar 

  41. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett., 106, 204502 (2011).

    Article  ADS  Google Scholar 

  42. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Observation of rogue wave holes in a water wave tank,” J. Geophys. Res. Oceans, 117, C00J02 (2012).

    ADS  Google Scholar 

  43. A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, “Super rogue waves: Observation of a higher-order breather in water waves,” Phys. Rev. X, 2, 011015 (2012).

    Google Scholar 

  44. A. Chabchoub, N. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, and N. Akhmediev, “Observation of a hierarchy of up to fifth-order rogue waves in a water tank,” Phys. Rev. E, 86, 056601 (2012).

    Article  ADS  Google Scholar 

  45. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nature Phys., 6, 790–795 (2010).

    Article  ADS  Google Scholar 

  46. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  47. H. Bailung, S. Sharma, and Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett., 107, 255005 (2011).

    Article  ADS  Google Scholar 

  48. M. Shats, H. Punzmann, and H. Xia, “Capillary rogue waves,” Phys. Rev. Lett., 104, 104503 (2010).

    Article  ADS  Google Scholar 

  49. C. Kharif and J. Touboul, “Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: A fully nonlinear approach,” Eur. Phys. J. Spec. Top., 185, 159–168 (2010).

    Article  Google Scholar 

  50. A. Slunyaev, “Freak wave events and the wave phase coherence,” Eur. Phys. J. Spec. Top., 185, 67–80 (2010).

    Article  Google Scholar 

  51. V. Zakharov and A. Gelash, “Nonlinear stage of modulation instability,” Phys. Rev. Lett., 111, 054101 (2013).

    Article  ADS  Google Scholar 

  52. P. A. Clarkson, A. S. Fokas, and M. J. Ablowitz, “Hodograph transformations of linearizable partial differential equations,” SIAM J. Appl. Math., 49, 1188–1209 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Kawamoto, “An exact transformation from the Harry Dym equation to the modified KdV equation,” J. Phys. Soc. Japan, 54, 2055–2056 (1985).

    Article  ADS  Google Scholar 

  54. D. Levi, O. Ragnisco, and A. Sym, “The Bäcklund transformations for nonlinear evolution equations which exhibit exotic solitons,” Phys. Lett. A, 100, 7–10 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  55. C. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (Math. Phys. Stud., Vol. 26), Springer, Dordrecht (2005).

    Book  MATH  Google Scholar 

  56. J. He, L. Zhang, Y. Cheng, and Y. Li, “Determinant representation of Darboux transformation for the AKNS system,” Sci. China Ser. A, 49, 1867–1878 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  57. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

  58. M. Wadati, Y. H. Ichikawa, and T. Shimizu, “Cusp soliton of a new integrable nonlinear evolution equation,” Prog. Theor. Phys., 64, 1959–1967 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E, 87, 052914 (2013).

    Article  ADS  Google Scholar 

  60. T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water: Part 1. Theory,” J. Fluid Mech., 27, 417–430 (1967).

    Article  ADS  MATH  Google Scholar 

  61. G. Whitham, “Non-linear dispersion of water waves,” J. Fluid Mech., 27, 399–412 (1967).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqin Qiu.

Additional information

This research is supported by the National Science Foundation of China (Grant No. 11271210) and the K. C. Wong Magna Fund in Ningbo University.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 2, pp. 275–290, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qiu, D., Cheng, Y. et al. The Darboux transformation for the Wadati–Konno–Ichikawa system. Theor Math Phys 191, 710–724 (2017). https://doi.org/10.1134/S0040577917050117

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917050117

Keywords

Navigation