Skip to main content
Log in

“Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct solutions of analogues of a time-dependent Schrödinger equation corresponding to an isomonodromic polynomial Hamiltonian of a Garnier system with two degrees of freedom. The solutions are determined by solutions of linear differential equations whose compatibility condition is the given Garnier system. With explicit substitutions, these solutions reduce to solutions of the Belavin–Polyakov–Zamolodchikov equations with four times and two spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Suleimanov, “Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations [in Russian],” in: Asymptotic Properties of Solutions of Differential Equations (A. M. Il’in, ed.), Math. Inst., Bashkirsk Science Center, Ural Branch, Acad. Sci. USSR, Ufa (1988), pp. 93–102

    Google Scholar 

  2. B. I. Suleimanov, Differ. Equ., 30, 726–732 (1994).

    MathSciNet  Google Scholar 

  3. B. I. Suleimanov, Theor. Math. Phys., 156, 1280–1291 (2008).

    Article  MathSciNet  Google Scholar 

  4. B. I. Suleimanov, “Quantization of certain autonomic reductions of Painlevé equations and the old quantum theory [in Russian],” in: Themes of Reports at the Intl. Conf. “Differential Equations and Related Topics” (Dedicated to the 110th anniversary of I. G. Petrovskii, Moscow, 29 May–4 June 2011), Moscow State Univ. Press, Moscow (2011), pp. 356–357.

    Google Scholar 

  5. B. I. Suleimanov, Ufa Math. J., 4, 127–135 (2012).

    MathSciNet  Google Scholar 

  6. B. I. Suleimanov, Funct. Anal. Appl., 48, 198–207 (2014).

    Article  Google Scholar 

  7. D. P. Novikov, Theor. Math. Phys., 161, 1485–1496 (2009).

    Article  Google Scholar 

  8. D. P. Novikov, “A monodromy problem and some functions connected with Painleve 6,” in: Painleve Equations and Related Topics, Euler International Mathematical Institute, St.-Petersburg (2011), pp. 118–121.

    Google Scholar 

  9. D. P. Novikov, R. K. Romanovskii, and S. G. Sadovnichuk, Some New Methods of Finite-Gap Integration of Soliton Equations [in Russian], Nauka, Novosibirsk (2013).

    Google Scholar 

  10. A. Bloemendal and B. Virág, Probab. Theory Related Fields, 156, 795–825 (2013).

    Article  MathSciNet  Google Scholar 

  11. A. Bloemendal and B. Virág, “Limits of spiked random matrices II,” arXiv:1109.3704v1 [math.PR] (2011).

    MATH  Google Scholar 

  12. A. Zabrodin and A. Zotov, J. Math. Phys., 53, 073507 (2012); arXiv:1107.5672v2 [math-ph] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Zabrodin and A. Zotov, J. Math. Phys., 53, 073508 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Zabrodin and A. Zotov, Constr. Approx., 41, 385–423 (2015).

    Article  MathSciNet  Google Scholar 

  15. A. V. Zotov and A. V. Smirnov, Theor. Math. Phys., 177, 1281–1338 (2013).

    Article  MathSciNet  Google Scholar 

  16. A. M. Levin, M. A. Olshanetsky, and A. V. Zotov, Russian Math. Surv., 69, 35–118 (2014); arXiv:1311.4498v2 [math-ph] (2013).

    Article  ADS  Google Scholar 

  17. A. M. Levin, M. A. Olshanetsky, and A. V. Zotov, JHEP, 10, 109–130 (2014); arXiv:1408.6246v3 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Nagoya, J. Math. Phys., 52, 083509 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Nagoya and Y. Yamada, Ann. Henri Poincaré, 15, 313–344 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Rumanov, “Hard edge for beta-ensembles and Painlevé III,” arXiv:1212.5333v1 [math-ph] (2012).

    MATH  Google Scholar 

  21. I. Rumanov, J. Math. Phys., 56, 013508 (2015); arXiv:1306.2117v2 [math-ph] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Rumanov, “Beta ensembles, quantum Painlevé equations, and isomonodromy systems,” arXiv:1408.3847v1 [math-ph] (2014).

    MATH  Google Scholar 

  23. I. Rumanov, “Painlevé representation of Tracy–Widomβ distribution for β = 6,” arXiv:1408.3779v2 [math-ph] (2014).

    Google Scholar 

  24. H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation,” arXiv:1312.5879v2 [math-ph] (2013).

    Google Scholar 

  25. H. Rosengren, Commun. Math. Phys., 340, 1143–1170 (2015); arXiv:1503.02833v1 [math-ph] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Litvinov, S. Lukyanov, N. Nekrasov, and A. Zamolodchikov, JHEP, 7, 144 (2014); arXiv:1309.4700v2 [hep-th] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. M. Grundland and D. Riglioni, J. Phys. A: Math. Theor., 48, 245201 (2015); arXiv:1405.0968v2 [math-ph] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Conte and I. Dornic, C. R. Math. Acad. Sci. Paris, 352, 803–806 (2014).

    Article  MathSciNet  Google Scholar 

  29. R. Garnier, Ann. Sci. École Norm. Sup. (3), 29, 1–126 (1912).

    MathSciNet  Google Scholar 

  30. A. I. Ovseevich, Dokl. Math., 75, 436–439 (2007).

    Article  MathSciNet  Google Scholar 

  31. A. I. Ovseevich, Problems Inform. Transmission, 44, 53–71 (2008).

    Article  MathSciNet  Google Scholar 

  32. L. Schlesinger, J. Reine Angew. Math., 141, 96–145 (1912).

    MathSciNet  Google Scholar 

  33. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry and two-dimensional quantum field theory [in Russian],” in: Instantons, Strings, and Conformal Field Theory (A. A. Belavin, ed.), Fizmatlit, Moscow (2002), pp. 224–271; Nucl. Phys. B, 241, 333–380 (1984).

    Google Scholar 

  34. A. B. Zamolodchikov and V. A. Fateev, Sov. J. Nucl. Phys., 43, 657–664 (1986).

    Google Scholar 

  35. M. Sato, T. Miwa, and M. Jimbo, Publ. Res. Inst. Math. Sci., 15, 201–278 (1979).

    Article  MathSciNet  Google Scholar 

  36. H. Kimura and K. Okamoto, J. Math. Pures Appl. (9), 63, 129–146 (1984).

    MathSciNet  Google Scholar 

  37. K. Okamoto, “Isomonodromic deformation and the Painlevé equations, and the Garnier system,”, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg (1982); J. Fac. Sci. Univ. Tokyo Sec. IA Math., 33, 575–618 (1986).

    Google Scholar 

  38. H. Kimura, Ann. Mat. Pura Appl. (4), 155, 25–74 (1989).

    Article  MathSciNet  Google Scholar 

  39. H. Sakai, “Isomonodromic deformation and 4-dimensional Painlevé-type equations,” Tech. Report, Univ. Tokyo, Tokyo (2010).

    Google Scholar 

  40. H. Kawakami, A. Nakamura, and H. Sakai, “Toward a classification of 4-dimensional Painlevé-type equations,” in: Algebraic and Geometric Aspects of Integrable Systems and Random Matrices (Contemp. Math., Vol. 593, A. Dzhamay, K. Maruno, and V. U. Pierce, eds.), Amer. Math. Soc., Providence, R. I. (2013), pp. 143–161.

    Chapter  Google Scholar 

  41. H. Kawakami, A. Nakamura, and H. Sakai, “Degeneration scheme of 4-dimensional Painlevé-type equations,” arXiv:1209.3836v2 [math.CA] (2012).

    Google Scholar 

  42. K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From Gauss to Painlevé: Modern Theory of Special Functions (Aspects Math., Vol. E16), Friedrich Vieweg, Braunschweig (1991).

    Book  MATH  Google Scholar 

  43. R. Garnier, Ann. Sci. École Norm. Sup., 43, 239–252 (1926).

    MathSciNet  Google Scholar 

  44. M. V. Babich, Russian Math. Surv., 64, 45–127 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  45. A. V. Stoyanovsky, “A relation between the Knizhnik–Zamolodchikov and Belavin–Polyakov–Zamolodchikov systems of partial differential equations,” arXiv:math-ph/0012013v4 (2000).

    Google Scholar 

  46. M. Mazzocco, Int. Math. Res. Not., 12, 613–646 (2002).

    Article  MathSciNet  Google Scholar 

  47. K. Okamoto, Proc. Japan Acad. Ser. A Math. Sci., 56, 264–268 (1980).

    Article  MathSciNet  Google Scholar 

  48. G. F. Fedoroff, Rec. Math., n.s., 11(53), 97–120 (1942).

    MathSciNet  Google Scholar 

  49. A. A. Bolibrukh, Inverse Monodromy Problems in the Analytic Theory of Differential Equations [in Russian], MTsNMO, Moscow (2009).

    Google Scholar 

  50. G. Mahoux, “Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients,” in: The Painlevé Property: One Century Later (R. Conte, ed.), Springer, New York (1999), pp. 35–76.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Suleimanov.

Additional information

The research of B. I. Suleimanov is funded by a grant from the Russian Scientific Foundation (Project No. 14-11-00078).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 187, No. 1, pp. 39–57, April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, D.P., Suleimanov, B.I. “Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom. Theor Math Phys 187, 479–496 (2016). https://doi.org/10.1134/S0040577916040048

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916040048

Keywords

Navigation