Skip to main content
Log in

Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the \( \mathcal{P} \)-Differentiability of Sobolev Mappings

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the behavior of Sobolev functions and mappings on the Carnot groups with the left invariant sub-Riemannian metric. We obtain some sufficient conditions for a Sobolev function to be locally Hölder continuous (in the Carnot–Carathéodory metric) on almost every hypersurface of a given foliation. As an application of these results we show that a quasimonotone contact mapping of class \( W^{1,\nu} \) of Carnot groups is continuous, \( \mathcal{P} \)-differentiable almost everywhere, and has the \( \mathcal{N} \)-Luzin property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In view of the properties of capacity zero sets (see [17, Proposition 5]) we have that \( S(x,r)=\{y\in\Omega:\rho(x,y)=r\}=\{y\in\widetilde{\Omega}:\rho(x,y)=r\} \) for all \( x\in\Omega \) and for almost all \( r\in(0,\operatorname{dist}(x,\partial\Omega)) \).

References

  1. García-Cuerva J. and Gatto A.E., “Lipschitz spaces and Calderón–Zygmund operators associated to non-doubling measures,” Publ. Mat., vol. 49, no. 2, 285–296 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. Vodopyanov S.K., “Monotone functions and quasiconformal mappings on Carnot groups,” Sib. Math. J., vol. 37, no. 6, 1269–1295 (1996).

    MathSciNet  Google Scholar 

  3. Monti R. and Morbidelli D., “Trace theorems for vector fields,” Math. Z., vol. 239, 747–776 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. Danielli D., Garofalo N., and Nhieu D.-M., Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot–Carathéodory Spaces, Amer. Math. Soc., Providence (2006) (Mem. Amer. Math. Soc.; vol. 182).

    Book  MATH  Google Scholar 

  5. Capogna L. and Garofalo N., “Ahlfors type estimates for perimeter measures in Carnot–Carathéodory spaces,” J. Geom. Anal., vol. 16, no. 3, 455–497 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hajłasz P., “Sobolev spaces on metric-measure spaces,” Contemp. Math., vol. 338, 173–218 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. Rothschild L.P. and Stein E.M., “Hypoelliptic differential operators and nilpotent groups,” Acta Math., vol. 137, no. 3, 247–320 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  8. Folland G.B. and Stein E.M., Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton (1982) (Princeton Math. Notes; vol. 28).

    MATH  Google Scholar 

  9. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin and Heidelberg (2007) (Springer Monogr. Math.).

    MATH  Google Scholar 

  10. Karmanova M. and Vodopyanov S., “A coarea formula for smooth contact mappings of Carnot–Carathéodory spaces,” Acta Appl. Math., vol. 128, no. 1, 67–111 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. Hajłasz P., “Sobolev spaces on an arbitrary metric space,” Potential Anal., vol. 5, no. 4, 403–415 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hajłasz P. and Koskela P., Sobolev Met Poincaré, Amer Math. Soc., Providence (2000) (Mem. Amer. Math. Soc.; vol. 145, no. 688).

    Book  MATH  Google Scholar 

  13. Vodopyanov S.K., “\( \mathcal{P} \)-Differentiability on Carnot groups in various topologies and related topics,” in: Proceedings on Analysis and Geometry, Sobolev Institute of Mathematics, Novosibirsk (2000), 603–670.

  14. Bagby T. and Ziemer W.P., “Pointwise differentiability and absolute continuity,” Trans. Amer. Math. Soc., vol. 191, 129–148 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  15. Calderón C.P., Fabes E.B., and Riviere N.M., “Maximal smoothing operators,” Indiana Univ. Math. J., vol. 23, 889–988 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyers N.G., “Taylor expansion of Bessel potentials,” Indiana Univ. Math. J., vol. 23, 1043–1049 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  17. Vodopyanov S.K. and Kudryavtseva N.A., “Nonlinear potential theory for Sobolev spaces on Carnot groups,” Sib. Math. J., vol. 50, no. 5, 803–819 (2009).

    Article  MathSciNet  Google Scholar 

  18. Reshetnyak Yu.G., “Space mappings with bounded distortion,” Sib. Math. J., vol. 8, no. 3, 466–487 (1967).

    Article  MATH  Google Scholar 

  19. Martio O. and Malý J., “Lusin’s condition (\( N \)) and mappings of the class \( W^{1}_{n} \),” J. Reine Angew. Math., vol. 485, 19–36 (1995).

    MathSciNet  MATH  Google Scholar 

  20. Vodopyanov S.K., “Differentiability of maps of Carnot groups of Sobolev classes,” Sb. Math., vol. 194, no. 6, 857–877 (2003).

    Article  MathSciNet  Google Scholar 

  21. Gehring F.W. and Lehto O., “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Ser. A I (1959) (Article 272, 9 pp.).

  22. Väisälä J., “Two new characterizations for quasiconformality,” Ann. Acad. Sci. Fenn. Ser. A I (1965) (Article 362, 12 pp.).

  23. Vodopyanov S.K., “The regularity of inverses to Sobolev mappings and the theory of \( \mathcal{Q}_{q,p} \)-homeomorphisms,” Sib. Math. J., vol. 61, no. 6, 1002–1038 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. AI, vol. 448, no. 12, 1–40 (1960).

    MATH  Google Scholar 

  25. Kruglikov V.I., “Capacity of condensers and spatial mappings quasiconformal in the mean,” Math. USSR-Sb., vol. 58, no. 1, 185–205 (1987).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by the Mathematical Center in Akademgorodok under the agreement no. 075–15–2022–281 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Basalaev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 4, pp. 700–719. https://doi.org/10.33048/smzh.2023.64.404

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basalaev, S.G., Vodopyanov, S.K. Hölder Continuity of the Traces of Sobolev Functions to Hypersurfaces in Carnot Groups and the \( \mathcal{P} \)-Differentiability of Sobolev Mappings. Sib Math J 64, 819–835 (2023). https://doi.org/10.1134/S0037446623040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623040043

Keywords

UDC

Navigation