Skip to main content
Log in

A \({C^\infty}\) closing lemma for Hamiltonian diffeomorphisms of closed surfaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a \({C^\infty}\) closing lemma for Hamiltonian diffeomorphisms of closed surfaces. This is a consequence of a \({C^\infty}\) closing lemma for Reeb flows on closed contact three-manifolds, which was recently proved as an application of spectral invariants in embedded contact homology. A key new ingredient of this paper is an analysis of an area-preserving map near its fixed point, which is based on some classical results in Hamiltonian dynamics: existence of KAM invariant circles for elliptic fixed points, and convergence of the Birkhoff normal form for hyperbolic fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov D.V., Zhuzhoma E.V.: Closing lemmas. Differential Equations 48(13), 1653–1699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cristofaro-Gardiner D., Hutchings M.: From one Reeb orbit to two. Journal of Differential Geometry 102(1), 25–36 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Cristofaro-Gardiner D., Hutchings M., Ramos V.G.B.: The asymptotics of ECH capacities. Inventiones Mathematicae 199(1), 187–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Floer A.: Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds. Duke Mathematical Journal 53(1), 1–32 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Franks J., Le Calvez P.: Regions of instability for non-twist maps. Ergodic Theory and Dynamical Systems 23(1), 111–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hofer H., Wysocki K., Zehnder E.: The dynamics on three-dimensional strictly convex energy surfaces. Annals of Mathematics (2) 148(1), 197–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hutchings M.: Quantitative embedded contact homology. Journal of Differential Geometry 88(2), 231–266 (2011)

    MathSciNet  MATH  Google Scholar 

  8. M. Hutchings. Mean action and the Calabi invariant (2015). arXiv:1509.02183v3

  9. Irie K.: Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics 9, 357–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koropecki A., Le Calvez P., Nassiri M.: Prime ends rotation numbers and periodic points. Duke Mathematical Journal 164(3), 403–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moser J.: The analytic invariants of an area-preserving mapping near a hyperbolic fixed point. Communications on Pure and Applied Mathematics 9(4), 673–692 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pugh C.C.: The closing lemma. American Journal of Mathematics 89(4), 956–1009 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pugh C.C.: An improved closing lemma and a General density theorem. American Journal of Mathematics 89(4), 1010–1021 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pugh C.C., Robinson C.: The \({C^1}\) closing lemma, including Hamiltonians. Ergodic Theory and Dynamical Systems 3(2), 261–313 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Siegel C.L., Moser J.K.: Lectures on celestial mechanics. Classics in Mathematics. Springer-Verlag, Berlin (1995)

    Google Scholar 

  16. Smale S.: Mathematical problems for the next century. The Mathematical Intelligencer 20(2), 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xia Z.: Area-preserving surface diffeomorphisms. Communications in Mathematical Physics 263(3), 723–735 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Zehnder. Note on smoothing symplectic and volume-preserving diffeomorphisms. Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pp. 828–854. Lecture Notes in Math., Vol. 597, Springer, Berlin (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Asaoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, M., Irie, K. A \({C^\infty}\) closing lemma for Hamiltonian diffeomorphisms of closed surfaces. Geom. Funct. Anal. 26, 1245–1254 (2016). https://doi.org/10.1007/s00039-016-0386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0386-3

Mathematics Subject Classification

Navigation