Skip to main content
Log in

Effect of Microalloying Elements on the Physicochemical Properties of Commercial-Purity Titanium Subjected to Severe Plastic Deformation

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The influence of low manganese and iron concentrations on the structure and the mechanical and electrochemical properties of commercial-purity VT1-0 titanium subjected to severe plastic deformation by high-pressure torsion (HPT) in Bridgman chamber is investigated. Manganese and iron microadditions are found to exert a significant effect on a number of the structural parameters and physicochemical properties of titanium upon severe plastic deformation by HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. H. J. Rack and J. I. Qazi, “Titanium alloys for biomedical applications,” Mater. Sci. Eng. C, 26 (80, 1269–1277 (2006).

  2. B. K. Kardashev, M. V. Narykova, V. I. Betekhtin, and A. G. Kadomtsev, “Effect of severe plastic deformation on the elastic properties of Ti and its alloys,” Fiz. Mezomekh. 22 (3), 71–76 (2019).

    Google Scholar 

  3. A. M. Gelezer, “Current techniques for the creation of high-strength multifunctional materials,” in Proceedings of the IX Eurasian Scientific and Practical Conference on Strength of Heterogeneous Structures (PROST 2018) (2018), p. 7.

  4. V. V. Latysh, I. A. Burlakov, D. M. Zabel’yan, A. I. Alimov, P. A. Petrov, B. A. Stepanov, and Bach Vu Chong, “Increasing the strength of commercial titanium VT1‑0 using the method of severe plastic deformation,” Bull. Russ. Acad. Sci.: Phys. 82, 1113–1124 (2018).

    Google Scholar 

  5. B. K. Kardashev, M. V. Narykova, V. I. Betekhtin, A. G. Kadomtsev, and A. Yu. Tokmacheva-Kolobova, “The influence of heat treatment on the elastic and microplastic properties of ultrafine-grained titanium with variable content of impurities,” Tech. Phys. Lett. 45 (22), 47–50 (2019).

    Article  Google Scholar 

  6. J. Stráskу́, P. Harcuba, K. Václavová, K. Horváth, M. Landa, O. Srba, and M. Janeček, “Increasing strength of a biomedical Ti–Nb–Ta–Zr alloy by alloying with Fe, Si, and O,” J. Mech. Behav. Biomed. Mater. 71, 329–336 (2017).

    Article  Google Scholar 

  7. G. V. Klevtsov, R. Z. Valiev, N. A. Klevtsova, E. D. Merson, and I. N. Pigaleva, “Corrosion resistance of steels with an ultrafine-grained structure in hydrogen sulfide environment,” Lett. Mater. 9 (3), 282–287 (2019).

    Article  Google Scholar 

  8. P. V. Bozhko, A. V. Korshunov, A. P. Il’in, A. I. Lotkov, and I. V. Ratochka, “Electrochemical behavior of plastically deformed titanium in sulfuric acid solutions,” Izv. Tomskogo Politekh. Univ. 319 (3), 17–24 (2011).

    Google Scholar 

  9. V. I. Semenov, S.-J. Huang, N. Tontchev, R. R. Valiev, P. A. Belov, D. Bogale, and A. Wang, “Corrosion behavior of commercially-pure titanium with different microstructures,” Mater. Sci. Non-Equilib. Phase Transfor., No. 2, 65–69 (2017).

  10. N. A. Shurygina, A. O. Cheretaeva, A. M. Glezer, D. L. D’yakonov, I. V. Chshetinin, R. V. Sundeev, A. A. Tomchuk, and L. F. Muradimova, “Effect of the temperature of megaplastic deformation in a Bridgman chamber on the formation of structures and the physicochemical properties of titanium,” Bull. Russ. Acad. Sci.: Phys. 82, 1113–1124 (2018).

    Article  CAS  Google Scholar 

  11. A. M. Glezer, V. N. Varyukhin, A. A. Tomchuk, and N. A. Maleeva, “Basic patterns of the generation of high-angle grain boundaries and the physical and mechanical properties of FeNi alloys upon severe plastic deformation,” Bull. Russ. Acad. Sci.: Phys. 78, 1022–1029 (2014).

    Article  CAS  Google Scholar 

  12. V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  13. F. Z. Utyashev, Deformation Techniques for the Manufacturing and Processing of Ultrafine-Grained Materials (Gilem, Ufa, 2013).

    Google Scholar 

  14. N. D. Tomashov, Titanium and Titanium-Based Corrosion Alloys (Metallurgiya, Moscow, 1985).

    Google Scholar 

  15. Yu. Ivanisenko, A. Kilmametov, H. Rusner, and R. Z. Valiev, “Evidence of α → ω phase transition in titanium after high-pressure torsion,” Int. J. Mater. Res. 99, 1–8 (2008).

    Article  Google Scholar 

  16. M. A. Shtremel’, Strength of Alloys. Part II. Deformation (MISiS, Moscow, 1997).

  17. A. M. Glezer, “Severe plastic deformation,” in Foundations of Plastic Deformation of Nanostructured Materials (Fizmatlit, Moscow, 2016), pp. 206–259.

    Google Scholar 

  18. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  19. A. Balakrishnan, B. C. Lee, T. N. Kima, and B. B. Panigrahi, “Corrosion behavior of ultra fine-grained titanium in simulated body fluid for implant application,” Trends Biomater. Artif. Organs, 22 (1), 58–64 (2008).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. A.G. Rakoch for fruitful discussion of the results of measuring the electrochemical properties.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-08-00640a) and the Russian Science Foundation (project no. 19-72-20066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shurygina.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygina, N.A., Cheretaeva, A.O., Glezer, A.M. et al. Effect of Microalloying Elements on the Physicochemical Properties of Commercial-Purity Titanium Subjected to Severe Plastic Deformation. Russ. Metall. 2021, 410–417 (2021). https://doi.org/10.1134/S0036029521040303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040303

Keywords:

Navigation