Skip to main content
Log in

Effect of the Fractionality and Direction of Severe Plastic Deformation on the Structure and Properties of Commercial-Purity Titanium

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of the fraction and the direction of deformation on the structure and the hardness of commercial-purity titanium severely deformed in a Bridgman cell at room temperature is studied. The direction of rotation of a movable anvil considerably affects the conditions under which the ω phase precipitates and the structural parameters of dynamically recrystallized grains and deformation-induced fragments formed upon severe plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  2. V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  3. V. A. Pozdnyakov and A. M. Glezer, “Possible evolution of a defect structure during severe plastic deformations: the role of relaxation mechanisms,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68 (10) 1449–1455 (2004).

  4. E. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: a wealth of challenging science,” Acta Mater. 61 (3) 782–817 (2013).

    Article  CAS  Google Scholar 

  5. Y. Beygelzimer, “Grain refinement versus voids accumulation during severe plastic deformation of polycrystals: mathematical simulation,” Mech. Mater. 37, 753–767 (2005).

    Article  Google Scholar 

  6. Y. Todaka, J. Sasaki, T. Moto, and M. Umemoto, “Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining,” Scr. Mater. 59 (6), 615–618 (2008).

    Article  CAS  Google Scholar 

  7. A. P. Zhilyaev, F. Galvez, A. Sharafutdinov, and M. T. Perez-Prado, “Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr,” Mater. Sci. Eng. A 527 (16–17), 3918–3928 (2010).

    Article  Google Scholar 

  8. Zhang J., Zhao Y., Pantea C., Qian J., J. Zhang, Y. Zhao, C. Pantea, J. Qian, L. L. Daemen, P. A. Rigg, R. S. Hixson, and C. W. Greeff, “Experimental constraints on the phase diagram of elemental zirconium,” Phys. Chem. Solids 66 (7), 1213–1219 (2005).

    Article  CAS  Google Scholar 

  9. J. C. Jamieson, “Crystal structures of titanium, zirconium, and hafnium at high pressures,” Science 140, 72–80 (1963).

    Article  CAS  Google Scholar 

  10. M. Tane, Y. Okuda, Y. Todaka, H. Ogi, and A. Nagakubo, “Elastic properties of single-crystalline ω phase in titanium,” Acta Materialia 61 (20), 7543–7554 (2013).

    Article  CAS  Google Scholar 

  11. N. Adachi, Y. Todaka, H. Suzuki, and M. Umemoto, “Evolution of deformation texture of high-pressure ω‑phases in pure Ti and Zr during high-pressure torsion straining,” Mater. Sci. Eng. 82, 0120201–01202031 (2015).

    Article  Google Scholar 

  12. Yu. Ivanisenko, A. Kilmametov, H. Rusner, and R. Z. Valiev, “Evidence of α → ω phase transition in titanium after high pressure torsion,” Int. J. Mater. Res. 99, 1–8 (2008).

    Article  CAS  Google Scholar 

  13. A. M. Glezer, A. A. Tomchuk, R. V. Sundeev, and M.V. Gorshenkov, “Two-phase model of the structure formed upon sever plastic deformation in α-Fe and FeNi alloy,” Mater. Lett. 161, 360–366 (2015).

    Article  CAS  Google Scholar 

  14. F. Z. Utyashev, Deformation Techniques for the Manufacturing and Processing of Ultrafine-Grained Materials (Gilem, Ufa, 2013).

    Google Scholar 

  15. N. A. Shurygina, A. O. Cheretaeva, A. M. Glezer, D. L. D’yakonov, I. V. Chshetinin, R. V. Sundeev, A. A. Tomchuk, and L. F. Muradimova, “Effect of the temperature of megaplastic deformation in a Bridgman chamber on the formation of structures and the physicochemical properties of titanium (VT1-0),” Bull. Rus. Acad. Nauk: Fiz. 82 (9), 1113–1124 (2018).

    Article  CAS  Google Scholar 

  16. A. M. Glezer, A. A. Tomchuk, and T. V. Rassadina, “Effect of reversible torsion on the structure and mechanical properties of iron under severe plastic deformations in a Bridgman camera,” Dokl. Phys. 61 (2), 61–63 (2016).

    Article  CAS  Google Scholar 

  17. A. M. Glezer and L. S. Metlov, “Physics of megaplastic (severe) deformation in solids,” Phys. Solid State 52 (6), 1162–1169 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-08-00640a) and the Ministry of Education and Science of the Russian Federation (project no. 2017/113 (2097)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shurygina.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygina, N.A., Glezer, A.M., D’yakonov, D.L. et al. Effect of the Fractionality and Direction of Severe Plastic Deformation on the Structure and Properties of Commercial-Purity Titanium. Russ. Metall. 2019, 1051–1056 (2019). https://doi.org/10.1134/S0036029519100264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519100264

Keywords:

Navigation