Skip to main content
Log in

Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The results of the irradiation of the Inconel 718 alloy with pulsed helium ion and helium plasma fluxes at a power density q = 107 W/cm2 and a pulse duration τ ≈ 100 ns in the Vikhr Plasma Focus setup are presented. The surface layer is not melted under the irradiation conditions. However, a slight increase in q causes melting of local regions in the surface and the formation of a wavy relief. Beam–plasma irradiation results in structural and phase changes in the irradiated surface layer, namely, the precipitation of microinclusions (complex niobium carbides), a redistribution of alloy elements, a slight decrease in the microhardness, and, accordingly, slight softening. These changes in the microstructure and the properties are determined by the melting of the irradiated surface in local regions, partial sputtering of solid-phase regions, and recrystallization in the near-surface layer during pulsed heating for each beam–plasma action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. I. N. Fridlyander, O. G. Senatorova, O. E. Osintsev, Nonferrous Metals and Alloys. Composite Metallic Materials, Ed. by I. N. Fridlyander (Mashinostroenie, Moscow, 2001), V. II-3.

    Google Scholar 

  2. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  3. M. A. Zlenko, M. V. Nagaitsev, V. M. Dovbysh, Additive Technologies in Mechanical Engineering: A Manual for Engineers (FGUP NAMI, Moscow, 2015).

    Google Scholar 

  4. A. G. Grigoryants, A. Ya. Stavertiy, and R. S. Tretyakov, “Five-axis system for the parts growing by coaxial laser melting of powder materials,” Tekhnol. Mashinostr., No. 10, 22–28 (2015).

  5. A. A. Pedash, N. A. Lysenko, V. V. Klochikhin, and V. G. Shilo, “Structure and properties of Inconel 718 alloy samples prepared by selective laser melting technology,” Aviats.-Kosm. Tech. Technol., No. 8 (143), 46–53 (2017).

  6. V. Barabash, K. Ioki, M. Merola, G. Sannazzaro, and N. Taylor, “Materials for the ITER vacuum vessel and in-vessel components-current status,” in Analysis of ITER Materials and Technologies: First Joint ITER-IAEA Technical Meeting (Principality of Monaco, 2010).

  7. I. V. Danilov, A. Yu. Leshukov, A. V. Razmerov, M. N. Sviridenko, Yu. S. Strebkov, I. V. Mazul’, A. A. Gervash, and A. N. Labusov, “Bearing structure of the first wall of ITER blanket,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 36 (1), 17–43 (2013).

    Google Scholar 

  8. H. K. Zhang, Z. Yao, C. Judge, and M. Griffiths, “Microstructural evolution of CANDU spacer material Ineonel X-760 under in situ ion irradiation,” Nucl. Mater. 443, 49–58 (2013).

    Article  Google Scholar 

  9. H. K. Zhang, Z. Yao, C. Judge, and M. Griffiths, “TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750,” Nucl. Mater. 451, 88–96 (2014).

    Article  Google Scholar 

  10. H. K. Zhang, Z. Yao, M. R. Daymond, and M. A. Kirk, “Elevated temperature irradiation damage in CANDU spacer material Inconel X-760,” Nucl. Mater. 445, 227–234 (2014).

    Article  Google Scholar 

  11. C. D. Judge, V. Bhakhri, Z. Jiao, R. J. Klassen, G. Was, G. A. Botton, and M. Griffiths, “The effects of proton irradiation on the microstructural and mechanical property evolution of Inconel X-760 with high concentrations of helium,” Nucl. Mater. 492, 213–226 (2017).

    Article  Google Scholar 

  12. “Pinch installations, pulse sharper, and plasma focus,” in Encyclopedias of Low-Temperature Plasma. Radiation Plasmodynamics, Ed. by V. E. Fortov and V. A. Gribkov (Janus-K, Moscow, 2007), Vol. IX-3, Ch. 3, pp. 16–26.

  13. V. A. Gribkov, A. Banaszak, B. Bienkowska, A. V. Dub-rovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R. A. Miklaszewski, M. Paduch, M. J. Sadowski, M. Seholz, A. Szydlowski, and K. Tomaszewski, “Plasma dynamics in PF-1000 device under the full-scale energy storage. II. Fast electrons and ions characteristics versus neutron emission parameters, and the gun optimization properties,” Phys. D: Appl. Phys. 40, 3592–3607 (2007).

    Article  Google Scholar 

  14. G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).

    Google Scholar 

  15. V. N. Pimenov, S. A. Maslyaev, L. I. Ivanov, E. V. Dyomina, V. A. Gribkov, A. V. Dubrovsky, M. Scholz, R. Miklaszewski, Yu. E. Ugaste, and B. Kolman, “Surface and bulk processes in materials induced by pulsed ion and plasma beams at Dense Plasma Focus devices,” Nukleonika 51 (1), 71–78 (2006).

    Google Scholar 

  16. V. A. Gribkov, A. S. Demin, E. V. Demina, A. V. Dub-rovsky, S. A. Maslyaev, V. N. Pimenov, M. D. Prusakova, I. P. Sasinovskaya, M. Scholz, and L. Karpinski, “Effect of extreme energy flux on Cr–Mn austenite steel modified with Sc,” Fiz. Khim. Obrab. Mater., No. 4, 5–12 (2012).

    Google Scholar 

  17. Yu. V. Martynenko, “Movement of melt metal layer and droplet erosion under plasma flow action typical for ITER transient regimes,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 37 (2), 53–59 (2014).

    Google Scholar 

  18. S. A. Maslyaev, “Thermal effects during pulsed irradiation of materials in a Plasma focus setup,” Perspekt. Mater. No. 5, 47–55 (2007).

    Google Scholar 

  19. Physical Values: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Mikhailov (Energoizdat, Moscow, 1991).

    Google Scholar 

  20. S. V. Maksimova and V. F. Khounov, “Structure of joints of heat-resistant nickel Inconel 718 alloy manufactured by high-temperature vacuum brazing,” Sovrem. Elektrometall., Nov. Mater., No. 3, 49–55 (2010).

Download references

ACKNOWLEDGMENTS

This work was performed within state assignment no. 007-00129-18-00 and supported by the International Atomic Energy Agency (project IAEA CRP no. 19248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Borovitskaya, V. A. Gribkov, K. V. Grigorovich, A. S. Demin, S. A. Maslyaev, E. V. Morozov, V. N. Pimenov, G. S. Sprygin, A. B. Zepelev, M. S. Gusakov, I. A. Logachev, G. G. Bondarenko or A. I. Gaidar.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovitskaya, I.V., Gribkov, V.A., Grigorovich, K.V. et al. Effect of Pulsed Helium Ion Fluxes and Helium Plasma on the Inconel 718 Alloy. Russ. Metall. 2018, 826–834 (2018). https://doi.org/10.1134/S0036029518090057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518090057

Keywords:

Navigation