Skip to main content
Log in

Physical Properties and Their Influence on Irradiation Damage in Metal Diborides and in High-Entropy Materials

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Physical properties and irradiation damage in four transition metal diborides (TM-diborides) are investigated: one high-entropy diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 and three subsets of quaternary diborides. Surprisingly, instead of being generally classified as ceramic materials, the predominant mechanism for heat conduction is through electrons. The irradiation response of these TM-diborides under ion irradiation at room temperature has been investigated using 10 MeV Au ions to fluences up to 6 × 1015 Au cm−2. Black dot dislocation loops are visible at low doses, whereas dislocation networks are observed with increasing fluence. While up to ~ 4% volume expansion has been determined in these diborides, the crystalline structure remains stable under room-temperature irradiation, preserving the hexagonal AlB2 phase. Perspectives of chemical disorder resulting from various TMs in high-entropy materials, along with their associated physical properties and influence on irradiation damage, are discussed in terms of the number of valence electrons, atomic mass, and volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Huang, J. Zhang, H. Fu, Y. Xiong, S. Ma, X. Xiang, B. Xu, W. Lu, Y. Zhang, W.J. Weber, and S. Zhao, Prog. Mater. Sci. 143, 10125 https://doi.org/10.1016/j.pmatsci.2024.101250 (2024).

    Article  Google Scholar 

  2. E.P. George and R.O. Ritchie, MRS Bull. 47, 145 https://doi.org/10.1557/s43577-022-00285-7 (2022).

    Article  Google Scholar 

  3. C. Oses, C. Toher, and S. Curtarolo, Nat. Rev., Mater. 5, 295 https://doi.org/10.1038/s41578-019-0170-8 (2020).

    Article  Google Scholar 

  4. L. Feng, W.G. Fahrenholtz, and D.W. Brenner, Annual Rev. of Mater. Res. 51, 165 https://doi.org/10.1146/annurev-matsci-080819-121217 (2021).

    Article  Google Scholar 

  5. S. Akrami, P. Edalati, M. Fuji, and K. Edalati, Mater. Sci. & Eng. R: Reports 146, 100644 https://doi.org/10.1016/j.mser.2021.100644 (2021).

    Article  Google Scholar 

  6. H. Xiang, Y. Xing, F.-Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, and Y. Zhou, J. Adv. Ceram. 10, 385 https://doi.org/10.1007/s40145-021-0477-y (2021).

    Article  Google Scholar 

  7. R.-Z. Zhang and M.J. Reece, J. of Mater. Chem. A 7, 22148 https://doi.org/10.1039/C9TA05698J (2021).

    Article  Google Scholar 

  8. Y. Wang, Adv. Appl. Ceramics 121(2), 57 https://doi.org/10.1080/17436753.2021.2014277 (2022).

    Article  Google Scholar 

  9. C. Toher, C. Oses, M. Esters, D. Hicks, G.N. Kotsonis, C.M. Rost, D.W. Brenner, J.-P. Maria, and S. Curtarolo, MRS Bull. 47, 194 https://doi.org/10.1557/s43577-022-00281-x (2022).

    Article  Google Scholar 

  10. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. & Eng. A 375–377, 213 https://doi.org/10.1016/j.msea.2003.10.257 (2004).

    Article  Google Scholar 

  11. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 https://doi.org/10.1016/j.actamat.2016.08.081 (2017).

    Article  Google Scholar 

  12. Y. Zhang, Y.N. Osetsky, and W.J. Weber, Chem. Rev. 122, 789 https://doi.org/10.1021/acs.chemrev.1c00387 (2022).

    Article  Google Scholar 

  13. Y. Zhang, L. Shan, Y.-F. Chai, W.-M. Guo, T.-Q. Zhang, L. Xu, J.-L. Cong, H.-T. Lin, L.-Y. Wei, and W.-M. Ma, Ceram. Int. https://doi.org/10.1016/j.ceramint.2023.01.200 (2023).

    Article  Google Scholar 

  14. B. Storr, L. Moore, K. Chakrabarty, Z. Mohammed, V. Rangari, C.-C. Chen, and S.A. Catledge, APL Mater. 10, 061109 https://doi.org/10.1063/5.0098276 (2022).

    Article  Google Scholar 

  15. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo, Sci. Rep. 6, 37946 https://doi.org/10.1038/srep37946 (2016).

    Article  Google Scholar 

  16. P. Sarker, T. Harrington, C. Toher, S. Curtarolo, and A. Jain, Nat. Commun. 9, 4980 https://doi.org/10.1038/s41467-018-07160-7 (2018).

    Article  Google Scholar 

  17. J. Zhang, B. Xu, Y. Xiong, S. Ma, Z. Wang, Z. Wu, and S. Zhao, npj Comput Mater 8, 5 https://doi.org/10.1038/s41524-021-00678-3 (2022).

    Article  Google Scholar 

  18. M.D. Hossain, T. Borman, C. Oses, M. Esters, C. Toher, L. Feng, A. Kumar, W.G. Fahrenholtz, S. Curtarolo, D. Brenner, J.M. LeBeau, and J.-P. Maria, Adv. Mater. 33, 2102904 https://doi.org/10.1002/adma.202102904 (2021).

    Article  Google Scholar 

  19. T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, and K.S. Vecchio, Acta Mater. 166, 271 https://doi.org/10.1016/j.actamat.2018.12.054 (2019).

    Article  Google Scholar 

  20. T. Jin, X. Sang, R.R. Unocic, R.T. Kinch, X. Liu, J. Hu, H. Liu, and S. Dai, Adv. Mater. 30, 1707512 https://doi.org/10.1002/adma.201707512 (2018).

    Article  Google Scholar 

  21. D. Moskovskikh, S. Vorotilo, V. Buinevich, A. Vasiliev, K. Okhotnikov, M. Lerner, A. Smirnova, A. Krasilnikova, and Y. Kolen’ko, Sci. Rep. 10, 19874 https://doi.org/10.1038/s41598-020-76945-y (2020).

    Article  Google Scholar 

  22. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria, Nat. Commun. 6, 8485 https://doi.org/10.1038/ncomms9485 (2015).

    Article  Google Scholar 

  23. C. Kinsler-Fedon, L. Nuckols, C.T. Nelson, Z. Qi, Q. Huang, D. Mandrus, Y. Zhang, W.J. Weber, and V. Keppens, Scri. Mater. 220, 114916 https://doi.org/10.1016/j.scriptamat.2022.114916 (2022).

    Article  Google Scholar 

  24. G. Anand, A.P. Wynn, C.M. Handley, and C.L. Freeman, Acta Mater. 146, 119 https://doi.org/10.1016/j.actamat.2017.12.021 (2018).

    Article  Google Scholar 

  25. A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, and B. Breitung, Adv. Mater. 31, 1806236 https://doi.org/10.1002/adma.201806236 (2019).

    Article  Google Scholar 

  26. M. Cui, C. Yang, B. Li, Q. Dong, M. Wu, S. Hwang, H. Xie, X. Wang, G. Wang, and L. Hu, Adv. Energy Mater. 11, 2002887 https://doi.org/10.1002/aenm.202002887 (2021).

    Article  Google Scholar 

  27. L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, and B. Breitung, Adv. Energy Mater. 12, 2103090 https://doi.org/10.1002/aenm.202103090 (2022).

    Article  Google Scholar 

  28. O.F. Dippo, N. Mesgarzadeh, T.J. Harrington, G.D. Schrader, and K.S. Vecchio, Sci. Rep. 10, 21288 https://doi.org/10.1038/s41598-020-78175-8 (2020).

    Article  Google Scholar 

  29. Y. Wang, T. Csanádi, H. Zhang, J. Dusza, and M.J. Reece, Acta Mater. 231, 117887 https://doi.org/10.1016/j.actamat.2022.117887 (2022).

    Article  Google Scholar 

  30. J.M. Schneider, E.P. George, and D.C. Dunand, Curr. Opin. Solid State Mater. Sci. 21(6), 323 https://doi.org/10.1016/j.cossms.2017.08.004 (2017).

    Article  Google Scholar 

  31. W.M. Mellor, K. Kaufmann, O.F. Dippo, S.D. Figueroa, G.D. Schrader, and K.S. Vecchio, J. Euro. Ceramic Soci. 41, 5791 https://doi.org/10.1016/j.jeurceramsoc.2021.05.010 (2021).

    Article  Google Scholar 

  32. M.A. Tunes, S. Fritze, B. Osinger, P. Willenshofer, A.M. Alvarado, E. Martinez, A.S. Menon, P. Ström, G. Greaves, E. Lewin, U. Jansson, S. Pogatscher, T.A. Saleh, V.M. Vishnyakov, and O. El-Atwani, Acta Mater. 250, 118856 https://doi.org/10.1016/j.actamat.2023.118856 (2023).

    Article  Google Scholar 

  33. F.X. Wang, X. Yan, T. Wang, Y. Wu, L. Shao, M. Nastasi, Y. Lu, and B. Cui, Acta Mater. 195, 739 https://doi.org/10.1016/j.actamat.2020.06.011 (2020).

    Article  Google Scholar 

  34. F. Wang, X. Yan, L. Shao, M. Nastasi, and B. Cui, Trans. Am. Nucl. Soc. 120, 327 (2019).

    Google Scholar 

  35. S. Guo and C.T. Liu, Prog. Nat. Sci. Mater. Int. 21, 433 https://doi.org/10.1016/S1002-0071(12)60080-X (2011).

    Article  Google Scholar 

  36. S. Guo, C. Ng, J. Lu, and C. Liu, J. Appl. Phys. 109, 103505 https://doi.org/10.1063/1.3587228 (2011).

    Article  Google Scholar 

  37. R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, and H. Fu, Acta Mater. 144, 129 https://doi.org/10.1016/j.actamat.2017.10.058 (2018).

    Article  Google Scholar 

  38. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber, Nat. Comm. 6, 8736 https://doi.org/10.1038/ncomms9736 (2015).

    Article  Google Scholar 

  39. Y. Osetsky, A.V. Barashev, L.K. Béland, Z. Yao, K. Ferasat, and Y. Zhang, npj Comput. Mater. 6, 38 https://doi.org/10.1038/s41524-020-0306-9 (2020).

    Article  Google Scholar 

  40. F. Tuomisto, I. Makkonen, J. Heikinheimo, F. Granberg, F. Djurabekova, K. Nordlund, G. Velisa, H. Bei, H. Xue, W.J. Weber, and Y. Zhang, Acta Mater. 196, 44 https://doi.org/10.1016/j.actamat.2020.06.024 (2020).

    Article  Google Scholar 

  41. Y. Zhang, X. Wang, Y.N. Osetsky, Y. Tong, R. Harrison, S.E. Donnelly, D. Chen, Y. Wang, H. Bei, B.C. Sales, K.L. More, P. Xiu, L. Wang, and W.J. Weber, Acta Mater. 181, 519 https://doi.org/10.1016/j.actamat.2019.10.013 (2019).

    Article  Google Scholar 

  42. Y. Zhang, T. Egami, and W.J. Weber, MRS Bull. 44(10), 798 https://doi.org/10.1557/mrs.2019.233 (2019).

    Article  Google Scholar 

  43. E. Castle, T. Csanadi, S. Grasso, J. Dusza, and M. Reece, Sci. Rep. 8, 8609 https://doi.org/10.1038/s41598-018-26827-1 (2018).

    Article  Google Scholar 

  44. A.J. Gordon and R.A. Ford, The chemist’s companion: a handbook of practical data, techniques, and references (Wiley, Hoboken, 1972).

    Google Scholar 

  45. J.R. Davis, Concise metals engineering data book (ASM International, Materials Park, OH, 1997).

    Google Scholar 

  46. M. Mayer, S. Mller, M. Rubel, A. Widdowson, S. Charisopoulos, T. Ahlgren, E. Alves, G. Apostolopoulos, N.P. Barradas, S. Donnelly, S. Fazinić, K. Heinola, O. Kakuee, H. Khodja, A. Kimura, A. Lagoyannis, M. Li, S. Markelj, M. Mudrinic, P. Petersson, I. Portnykh, D. Primetzhofer, P. Reichart, D. Ridikas, T. Silva, S.M. Gonzalez de Vicente, and Y.Q. Wang, Nucl. Fusion 60, 025001 https://doi.org/10.1088/1741-4326/ab5817 (2020).

    Article  Google Scholar 

  47. Y. Zhang, L. Wang, and W.J. Weber, J Mater. Sci. Tech. 140, 260 https://doi.org/10.1016/j.jmst.2022.08.034 (2023).

    Article  Google Scholar 

  48. Y. Zhang, M.L. Crespillo, H. Xue, K. Jin, C.-H. Chen, C.L. Fontana, J.T. Graham, and W.J. Weber, Nucl. Instrum. & Meth. B 338, 19 https://doi.org/10.1016/j.nimb.2014.07.028 (2014).

    Article  Google Scholar 

  49. Y. Zhang and W.J. Weber, Appl. Phys. Rev. 7, 041307 https://doi.org/10.1063/5.0027462 (2020).

    Article  Google Scholar 

  50. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Meth. B 268, 1818 https://doi.org/10.1016/j.nimb.2010.02.091 (2010).

    Article  Google Scholar 

  51. W.J. Weber and Y. Zhang, Curr. Opin. Solid State Mater. Sci. 23, 100757 https://doi.org/10.1016/j.cossms.2019.06.001 (2019).

    Article  Google Scholar 

  52. L. Zhang, D.A. Pejaković, J. Marschall, and M. Gasch, J. Am. Ceram. Soc. 94, 2562 https://doi.org/10.1111/j.1551-2916.2011.04411.x (2011).

    Article  Google Scholar 

  53. D.L. McClane, W.G. Fahrenholtz, and G.E. Hilmas, J. Am. Ceram. Soc. 97, 1552 https://doi.org/10.1111/jace.12893 (2014).

    Article  Google Scholar 

  54. J.F. Guria, A. Bansal, and V. Kumar, J. Eur. Ceramic Soci. 41, 1 https://doi.org/10.1016/j.jeurceramsoc.2020.08.051 (2021).

    Article  Google Scholar 

  55. J. Gild, A. Wright, K. Quiambao-Tomko, M. Qin, J.A. Tomko, M.S. Bin Hoque, J.L. Braun, B. Bloomfield, D. Martinez, T. Harrington, K. Vecchio, P.E. Hopkins, and J. Luo, Ceram. Int. 46, 6906 https://doi.org/10.1016/j.ceramint.2019.11.186 (2020).

    Article  Google Scholar 

  56. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, R.B. Dinwiddie, W.D. Porter, and H. Wang, J. Am. Ceramic Soci. 91, 1405 https://doi.org/10.1111/j.1551-2916.2008.02268.x (2008).

    Article  Google Scholar 

  57. S. Guo, T. Nishimura, and Y. Kagawa, Scripta Materi. 65, 1018 https://doi.org/10.1016/j.scriptamat.2011.09.007 (2011).

    Article  Google Scholar 

  58. R. Franz and G. Wiedemann, Ann. Phys. 165(8), 497 https://doi.org/10.1002/andp.18531650802 (1853).

    Article  Google Scholar 

  59. C.A. Dennett, Z. Hua, E. Lang, F. Wang, and B. Cui, Mater. Res. Lett. 10(9), 611 https://doi.org/10.1080/21663831.2022.2078678 (2022).

    Article  Google Scholar 

  60. D.G. Cahill and R.O. Pohl, Solid State Commun. 70(10), 927 https://doi.org/10.1016/0038-1098(89)90630-3 (1989).

    Article  Google Scholar 

  61. D.J. Antonio, K. Shrestha, J.M. Harp, C.A. Adkins, Y. Zhang, J. Carmack, and K. Gofryk, J. Nucl. Mater. 508, 154 https://doi.org/10.1016/j.jnucmat.2018.05.036 (2018).

    Article  Google Scholar 

  62. Y.P. Wang, G.Y. Gan, W. Wang, Y. Yang, and B.Y. Tang, Phys. Status Solidi B 255(8), 1800011 https://doi.org/10.1002/pssb.201800011 (2018).

    Article  Google Scholar 

  63. M. Rahman, C.C. Wang, W. Chen, S.A. Akbar, and C. Mroz, J. Am. Ceramic Soci. 78(5), 1380 https://doi.org/10.1111/j.1151-2916.1995.tb08498.x (1995).

    Article  Google Scholar 

  64. M. Magnuson, L. Hultman, and H. Högberg, Vacuum 196, 110567 https://doi.org/10.1016/j.vacuum.2021.110567 (2022).

    Article  Google Scholar 

  65. X. Liu, M. Le Flem, J.L. Béchade, F. Onimus, T. Cozzika, and I. Monnet, Nucl. Instrum. Meth. B 268(5), 506 https://doi.org/10.1016/j.nimb.2009.11.017 (2010).

    Article  Google Scholar 

  66. H.F. Huang, J.J. Li, D.H. Li, R.D. Liu, G.H. Lei, Q. Huang, and L. Yan, J. Nucl. Mater. 454(1–3), 168 https://doi.org/10.1016/j.jnucmat.2014.07.033 (2014).

    Article  Google Scholar 

  67. W. Jiang, C.M. Wang, W.J. Weber, M.H. Engelhard, and L.V. Saraf, J. Appl. Phys. 95, 4687 https://doi.org/10.1063/1.1690102 (2004).

    Article  Google Scholar 

  68. I.-T. Bae, W.J. Weber, and Y. Zhang, J. Appl. Phys. 106, 123525 https://doi.org/10.1063/1.3272808 (2009).

    Article  Google Scholar 

  69. S. Yang, J. Lu, F. Xing, L. Zhang, and Y. Zhong, Acta Mater. 192, 11 https://doi.org/10.1016/j.actamat.2020.03.039 (2020).

    Article  Google Scholar 

  70. Y.N. Osetsky, A. Barashev, and Y. Zhang, Curr. Opin. Solid State Mater. Sci. 25, 100961 https://doi.org/10.1016/j.cossms.2021.100961 (2021).

    Article  Google Scholar 

  71. K. Ferasat, Y.N. Osetsky, A.V. Barashev, Y. Zhang, Z. Yao, and L.K. Béland, J. Chem. Phys. 153, 074109 https://doi.org/10.1063/5.0015039 (2020).

    Article  Google Scholar 

  72. Y.N. Osetskiy, L. Beland, A. Barashev, and Y. Zhang, Curr. Opin. Solid State Mater. Sci. 22, 65 https://doi.org/10.1016/j.cossms.2018.05.003 (2018).

    Article  Google Scholar 

  73. C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M. He, I.M. Robertson, W.J. Weber, and L. Wang, Nat. Commun. 7, 13564 https://doi.org/10.1038/ncomms13564 (2016).

    Article  Google Scholar 

  74. F.X. Zhang, Y. Tong, G. Velisa, H. Bei, W.J. Weber, and Y. Zhang, J. Phys. Cond. Mat. 32, 074002 https://doi.org/10.1088/1361-648X/ab5388 (2020).

    Article  Google Scholar 

  75. F.X. Zhang, M.W. Ullah, S. Zhao, K. Jin, Y. Tong, G. Velisa, H. Xue, R. Bei, R. Huang, C. Park, W.J. Weber, and Y. Zhang, J. Alloys Compd. 755, 242 https://doi.org/10.1016/j.jallcom.2018.04.285 (2018).

    Article  Google Scholar 

  76. F.X. Zhang, Y. Tong, K. Jin, H. Bei, W. Weber, and Y. Zhang, Entropy 20, 900 https://doi.org/10.3390/e20120900 (2018).

    Article  Google Scholar 

  77. Y. Zhang, M.A. Tunes, M.L. Crespillo, F. Zhang, W.L. Boldman, P.D. Rack, L. Jiang, C. Xu, G. Greaves, S.E. Donnelly, L. Wang, and W.J. Weber, Nanotechnol.: Focus. Ion Beam Technol 30, 294004 https://doi.org/10.1088/1361-6528/ab1605 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Laboratory Directed Research and Development Program at Idaho National Laboratory under the Department of Energy (DOE) Idaho Operations Office (an agency of the U.S. Government) Contract DE-AC07-05ID145142. Ion beam work was performed at the UT ORNL Ion Beam Materials Laboratory located on the campus of the University of Tennessee-Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwen Zhang or Hua-Tay Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Khanolkar, A.R., Bawane, K.K. et al. Physical Properties and Their Influence on Irradiation Damage in Metal Diborides and in High-Entropy Materials. JOM 76, 2602–2618 (2024). https://doi.org/10.1007/s11837-024-06486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06486-6

Navigation