Skip to main content
Log in

Synthesis and characterization of metal–polymer nanocomposites with radiation-protective properties

  • Processes of Manufacture of Ferrous and Nonferrous Metals
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Metal–polymer nanocomposites, which can weaken the activity of a beta radiation source in undesirable directions at the minimum protection size, are developed. These nanocomposites are fabricated by dispersing metal-containing nanoparticles in thermoplastic matrices. Metal nanoparticles are synthesized by the polymerassisted thermolysis of metal-containing precursors. The composition and structure of the nanocomposites are characterized by elemental and X-ray diffraction analyses and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SP 6030-91. Sanitary Rules of Operation with Ionizing Radiation Sources during Service and Repair of Aircrafts in Civil Aviation Enterprises of 11.11.1991.

  2. N. Shruti, E. K. Osei, and J. T. W. Yeow, “Polymer nanocomposite-based shielding against diagnostic X-rays,” J. Appl. Polym. Sci. 127, 4939–4946 (2013).

    Article  Google Scholar 

  3. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, “Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride,” Appl. Phys. Lett. 84, 589 (2004).

    Article  Google Scholar 

  4. M. G. Lines, “Nanomaterials for practical functional uses,” J. Alloys Comp. 449, 242 (2008).

    Article  Google Scholar 

  5. X.-M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, and B. P. Uberuaga, “Efficient annealing of radiation damage near grain boundaries via interstitial emission,” Science 327, 1631 (2010).

    Article  Google Scholar 

  6. L. S. Novikov, V. N. Mileev, E. N. Voronina, et al., “Radiation influence on aerospace materials,” Poverkhnost’, No. 3, 32–48 (2011).

    Google Scholar 

  7. Yu. I. Golovin, A. A. Dmitrievskii, I. A. Pushnin, et al., “Reversible change in the microhardness of Si crystals induced by low-dose electron irradiation at room temperature,” Fiz. Tverd. Tela 46 (10), 1790 (2004).

    Google Scholar 

  8. A. A. Dmitrievskii, N. Yu. Efremova, and A. V. Shuklinov, “Effect of high-intensity beta radiation on cracking during silicon indentation,” Poverkhnost’, No. 4, 63–64 (2011).

    Google Scholar 

  9. E. I. Aleksandrova, G. I. Dzhardimalieva, A. S. Rozenberg, et al., “Thermal decomposition of copper acrylate,” Russ. Chem. Bull. 42, 1666 (1993).

    Article  Google Scholar 

  10. S. M. Aldoshin, G. I. Dzhardimalieva, A. D. Pomogailo, et al., “Reaction ability of metal-containing monomers. Polymer-assisted synthesis of nanosized quasicrystals,” Russ. Chem. Bull. 60 (9), 1871–1879 (2011).

    Article  Google Scholar 

  11. A. S. Rozenberg, G. I. Dzhardimalieva, and A. D. Pomogailo, “Formation of nanoparticles during the solid-phase thermal transformations of metal carboxylates,” Dokl. Akad. Nauk 356 (1), 66–69 (1997).

    Google Scholar 

  12. A. D. Pomogailo, G. I. Dzhardimalieva, S. I. Pomogailo, et al., “Metallic polymers and nanocomposites based on unsaturated refractory metal alkoxides,” Vysokomol. Soedin. 53 (7), 1239–1245 (2011).

    Google Scholar 

  13. A. D. Pomogailo, A. S. Rozenberg, and G. I. Dzhardimalieva, “Metallic complexes as the precursors of selforganized nanocomposites,” Ross. Khim. Zh. 53, 140–151 (2009).

    Google Scholar 

  14. A. D. Pomogailo, A. S. Rozenberg, and G. I. Dzhardimalieva, “Thermolysis of metallic polymers and their precursors as a method for nanocomposite production,” Usp. Khim. 80 (3), 272–307 (2011).

    Article  Google Scholar 

  15. A. D. Pomogailo, G. I. Dzhardimalieva, A. S. Rozenberg, and D. N. Muraviev, “Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix,” J. Nanoparticle Research 5 (5, 6) 497–519 (2003).

    Article  Google Scholar 

  16. M. Z. Botelho, R. Kunzel, E. Okuno, R. S. Levenhagen, T. Basegio, and C. P. Bergmann, “X-ray transmission through nanostructured and microstructured CuO materials,” Appl. Radiat. Isotopes 69, 527 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Fetisov.

Additional information

Original Russian Text © A.N. Bychkov, G.I. Dzhardimalieva, G.P. Fetisov, V.V. Valskiy, N.D. Golubeva, A.D. Pomogailo, 2015, published in Tekhnologiya Metallov, 2015, No. 11, pp. 2–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, A.N., Dzhardimalieva, G.I., Fetisov, G.P. et al. Synthesis and characterization of metal–polymer nanocomposites with radiation-protective properties. Russ. Metall. 2016, 1207–1213 (2016). https://doi.org/10.1134/S0036029516130024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516130024

Keywords

Navigation