Skip to main content

Radiation-Induced Effects on the Properties of Polymer-Metal Nanocomposites

  • Chapter
  • First Online:
Radiation Effects in Polymeric Materials

Abstract

This chapter primarily includes the fundamental concepts related to metal nanoparticles with their unique features followed by importance of incorporating them in polymer matrix and finally considering irradiation as a novel tool to tailor the properties of metal–polymer nanocomposites. These nanocomposites are one of the promising materials which have been used in a wide variety of applications ranging from biomedical to optical and electrical devices to aerospace applications. Ionizing irradiation technique is among the most promising strategies for synthesis as well as to amend the changes in composite material because of the advantage of irradiation process compared to conventional synthesis like chemical, vapour deposition, etc., the process is simple, clean and controlled, carried out without producing undesired oxidants products of reducing agents, avoids the addition of undesirable impurities and produces composites which are highly stable. Irradiation-induced effects on polymer-metal nanocomposites provide unique pathway to control and modify the structural, optical and electrical properties of composites basically required for various applications as per desire. Thus, utilizing irradiations as a novel tool, a systematic study has been done to tune the properties of polymer-metal nanocomposites. Induced changes on structural, optical, and electrical properties have been conferred in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1960) Eng Sci 22–36

    Google Scholar 

  2. Drexler KE (2004) Bull Sci Technol Soc 24(1):21–27

    Article  Google Scholar 

  3. “Plenty of room” revisited (2009) Nat Nanotechnol 4:781

    Google Scholar 

  4. Azzoni CB, Di Martino D, Marchesi V, Messiga B, Riccardi MP (2005) Archaeometry 47(2):381–388

    Article  CAS  Google Scholar 

  5. Cox GA, Gillies KJS (1986) Archaeometry 28(1):57–68

    Article  CAS  Google Scholar 

  6. Cramp RJ (1975) J Glass Stud 17:88–96

    Google Scholar 

  7. Brugger J (2009) Nanotechnology 20(43):430206

    Article  PubMed  Google Scholar 

  8. Suri SS, Fenniri H, Singh B (2007) J Occup Med Toxicol 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Solanki A, Kim JD, Lee KB (2008) Nanomedicine (Lond) 3(4):567–578

    Article  CAS  Google Scholar 

  10. Kim E-S, Ahn EH, Dvir T, Kim D-H (2014) Int J Nanomed 9:1–5

    Article  CAS  Google Scholar 

  11. Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Adv Drug Deliv Rev 0:79–97. https://doi.org/10.1016/j.addr.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Chahal RP, Mahendia S, Tomar AK, Kumar S (2015) Appl Surf Sci 343:160–165

    Article  CAS  Google Scholar 

  13. Chahal RP, Mahendia S, Tomar AK, Kumar S (2012) J Alloys Comp 538:212–219

    Article  CAS  Google Scholar 

  14. Mahendia S, Tomar AK, Chahal RP, Goyal P, Kumar S (2011) J Phys D Appl Phys 44:205105

    Article  CAS  Google Scholar 

  15. Cao Z, Abe Y, Nagahama T, Tsuchiya K, Ogino K (2013) Polymer 54:269–276

    Article  CAS  Google Scholar 

  16. Xu P, Han X, Zhang B, Dua Y, Wang H (2014) Chem Soc Rev 43:1349–1360

    Article  CAS  PubMed  Google Scholar 

  17. Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Wiley, Hoboken, New Jersey

    Google Scholar 

  18. Yeum YH, Deng Y (2005) Colloid Polym Sci 283:1172–1179

    Article  CAS  Google Scholar 

  19. Biswas A, Avasthi DK, Fink D, Kanzow J, Schürmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Instr Meth B 217:39–50

    Article  CAS  Google Scholar 

  20. Qureshi A, Singh NL, Shah S, Kulriya P, Singh F, Avasthi DK (2008) Nucl Instr Meth B 266:1775–1779

    Article  CAS  Google Scholar 

  21. Abd El-Kader KAM, Hamied SFA (2002) J Appl Polym Sci 86:1219–1226

    Article  CAS  Google Scholar 

  22. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  PubMed  Google Scholar 

  23. Praharaj S, Nath S, Ghosh S, Kundu S, Pal T (2004) Langmuir 20:9889

    Article  CAS  PubMed  Google Scholar 

  24. Campbell CT, Parker SC, Starr DE (2002) Science 298:811

    Article  CAS  PubMed  Google Scholar 

  25. Frederix F, Friedt J, Choi K, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Anal Chem 75:6894

    Article  CAS  PubMed  Google Scholar 

  26. Folarin OM, Sadiku ER, Maity A (2011) Inter J Phys Sci 6(21):4869–4882

    Google Scholar 

  27. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  28. Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley-Interscience, New York

    Book  Google Scholar 

  29. Whitesides GM, Love JC (2001) Sci Am 285:38

    Article  CAS  PubMed  Google Scholar 

  30. Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  31. Uskoković V (2013) J Biomed Nanotechnol 9(9):1441–1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fritz G, Schädler V, Willenbacher N, Wagner NJ (2002) Langmuir 18:6381–6390

    Article  CAS  Google Scholar 

  33. Corbierre MK, Cameron NS, Mark S, Laaziri K, Lennox RB (2005) Langmuir 21:6063

    Article  CAS  PubMed  Google Scholar 

  34. Naka K, Itoh H, Park S, Chujo Y (2004) Polymer Bull 52:171–176

    Article  CAS  Google Scholar 

  35. Balan L, Burget D (2006) Eur Polym J 42:3180–3189

    Article  CAS  Google Scholar 

  36. Lee JY, Liao Y, Nagahata R, Ahoriuchi S (2006) Polymer 47:7970–7979

    Article  CAS  Google Scholar 

  37. Sangermano M, Yagci Y, Rizza G (2007) Macromol 40:8827–8829

    Article  CAS  Google Scholar 

  38. Nadagouda MN, Varma RS (2007) Macromol Rapid Commun 28:465–472

    Article  CAS  Google Scholar 

  39. Kanbur Y, Irimia-V M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, Leonat L, Ullah M, Sarica H, Erten-Ela S, Schwodiauer R, Sitter H, Kucukyavuz Z, Bauer S, Sariciftc NS (2012) Org Electron 13:919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun Y, Pearson C, PettyMC (2009) J Appl Phys 105:034508

    Google Scholar 

  41. Choi JS (2008) J Inf Disp 9:35

    Article  Google Scholar 

  42. Feng L, Tang W, Xu X, Cui Q, Guo X (2013) IEEE Electron Device Lett 34:129

    Article  CAS  Google Scholar 

  43. Hadjichristov GBIL, Stefanov BI, Florian, Blaskova GD (2009) Appl Surf Sci 256:779–789

    Article  CAS  Google Scholar 

  44. Ram S, Gautam A, Fecht HJ, Cai J, Bansmann H, Behm RJ (2007) Philos Mag Lett 87:361

    Article  CAS  Google Scholar 

  45. Malik TG-A, Latif RM-A, Sawaby A, Ahmed SM (2008) J Appl Sci Res 4:331

    Google Scholar 

  46. Coiai S, Passaglia E, Pucci A, Ruggeri G (2015) Materials 8:3377–3427

    Article  CAS  PubMed Central  Google Scholar 

  47. Camargo PHC, Satyanarayana KG, Wypych F (2009) Mat Res 12(1):1–39

    Article  CAS  Google Scholar 

  48. Heilmann A (2010) Polymer films with embedded metal nanoparticles. Springer Series in Materials Science, Springer, Berlin

    Google Scholar 

  49. Kunckel J (1689) Ars Vitraria Experimentalis oder Vollkommene Glasmacherkunst, Frankfurt

    Google Scholar 

  50. Faraday M (1857) Phil Trans R Soc Lond 147:145–181

    Article  Google Scholar 

  51. Quinten M (2011) Optical properties of nanoparticle systems: mie and beyond. Wiley-VCH Verlag & Co., Germany

    Book  Google Scholar 

  52. Steubing W (1908) Ann Phys (Leipzig) 26:329–371

    Article  CAS  Google Scholar 

  53. Keirbeg U, Vollmer M (1995) Optical properties of metal clusters (Springer Series in Material Science No 25). Springer, Berlin

    Google Scholar 

  54. Heilman A (2003) Polymer films with embedded metal nanoparticles. Springer, Berlin

    Book  Google Scholar 

  55. Schonauer D, Kreibig U (1985) Surf Sci 156:100–111

    Article  Google Scholar 

  56. Mie G (1908) Ann Phys (Leipzig) 25:377–445

    Article  CAS  Google Scholar 

  57. Henglein A (1989) Chem Rev 89:1861

    Article  CAS  Google Scholar 

  58. Liu Fu-K, Hsieh S-Y, Ko Fu-H, Chu T-C (2003) Colloids Surf A Physicochem Eng Aspects 231:31–38

    Article  CAS  Google Scholar 

  59. El-Sayed MA (2004) Acc Chem Res 37:326–333

    Article  CAS  PubMed  Google Scholar 

  60. Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nano Rev 1:5214

    Article  CAS  Google Scholar 

  61. Lüdersdorff FW. Verh. Verein. Beförderung Gewerbefleiss. 1833 Preussen 12:224

    Google Scholar 

  62. Garnett JCM (1904) Philos Trans R Soc London 203:385–420

    Article  CAS  Google Scholar 

  63. Caseri W (2000) Macromol Rapid Comm 21:705–722

    Article  CAS  Google Scholar 

  64. Maier SA, Kik PG, Atwater HA, Sheffer M, Harel E, Koel BE, Requicha AAG (2003) Nat Mater 2:229

    Article  CAS  PubMed  Google Scholar 

  65. Lu J, Moon K-S, Xu J, Wong CP (2006) J Mater Chem 16:1543

    Article  CAS  Google Scholar 

  66. Xia Y, Halas XJ (2005) MRS Bull 30:338

    Article  CAS  Google Scholar 

  67. Srivastava S, Haridas M, Basu JK (2008) Bull Mater Sci 31:213

    Article  Google Scholar 

  68. Li S, Lin MM, Toprak MS, Kim KD, Muhammed M (2010) Nano Rev 1:5214

    Article  CAS  Google Scholar 

  69. Qiu K, Netravali AN (2013) Polym Compos 34:799–809

    Article  CAS  Google Scholar 

  70. Razzak MT, Darwis D, Zainuddin S (2001) Radiat Phys Chem 62:107–113

    Article  CAS  Google Scholar 

  71. Demerlis CC, Schoneker DR (2003) Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  72. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963–1014

    Article  CAS  Google Scholar 

  73. Solaro R, Corti A, Chiellini E (2000) Polym Adv Technol 11:873–878

    Article  CAS  Google Scholar 

  74. Devi CU, Sharma AK, Rao VVRN (2002) Mater Lett 56:167

    Article  CAS  Google Scholar 

  75. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) J Mater Chem Phys 93:117

    Article  CAS  Google Scholar 

  76. Perelaer J, Hendriks C, de Laat AWM, Schubert US (2009) Nanotechnology 20:165303

    Article  PubMed  CAS  Google Scholar 

  77. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  78. Toker RD, Kayaman-Apohan N, Kahraman MV (2013) Prog Org Coat 76:1243–1250

    Article  CAS  Google Scholar 

  79. Evans RD (1955) The atomic nucleus. Tata McGraw-Hill Publishing Company, New York

    Google Scholar 

  80. Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley, UK

    Google Scholar 

  81. Leo WR (1994) Techniques for nuclear and particle physics experiments—a how-to approach. Springer, Berlin

    Book  Google Scholar 

  82. Sinha D, Phukan T, Tripathy SP, Mishra R, Dwivedi KK (2001) Radiat Meas 34:109–111

    Article  CAS  Google Scholar 

  83. Saad AF, Atwa ST, Yokota R, Fujii M (2005) Radiat Meas 40:780–784

    Article  CAS  Google Scholar 

  84. Fink D (ed) (2004) Fundamentals of ion-irradiated polymers. Springer, Berlin

    Google Scholar 

  85. Ritchie RH, Claussen C (1982) Nucl Instrum Methods B 198:133–138

    Article  CAS  Google Scholar 

  86. Fink D, Chadderton L (2005) Braz J Phys 35(3B):735–740

    Article  CAS  Google Scholar 

  87. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Book  Google Scholar 

  88. Aumayr F, Winter HP (2005) Nucl Instrum Methods B 233:111

    Article  CAS  Google Scholar 

  89. Prakash J, Pivin JC, Swart H (2015) Adv Coll Interface Sci 226:187–202

    Article  CAS  Google Scholar 

  90. Kharisov BI, Kharissova OV, Mendez UO, Radiation synthesis of materials and compounds. ISBN 9781466505223 - CAT# K14554, pp 11–18

    Google Scholar 

  91. Fujita H, Izawa M, Yamazaki H (1962) Nature 196:666–667

    Article  CAS  Google Scholar 

  92. Marignier JL, Belloni J, Delcourt M, Chevalier JP (1985) Nature 317:344–345

    Article  CAS  Google Scholar 

  93. Henglein A (1989) Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  94. Belloni J, Amblard J, Marignier JL, Mostafavi M (1994) Cluster atoms and molecules. In: Haberland H (ed), vol 2. Springer, Berlin

    Google Scholar 

  95. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 22:1239–1255

    Article  CAS  Google Scholar 

  96. Drobny JG (2003) Radiation technology for polymers. CRC Press LLC

    Google Scholar 

  97. Choi SH, Lee K-P, Park S-B (2003) Study Surf Catal 146:93

    Article  CAS  Google Scholar 

  98. Choi S-H, Choi MS, KP Lee, Kang HD (2004) J Appl Polym Sci 91(4):2335

    Google Scholar 

  99. Kang Y-O, Choi S-H, Gopalan A, Lee K-P, Kang H-D (2006) Song YS 352:463–468

    CAS  Google Scholar 

  100. Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A (2010) Radiat Phy Chem 79:1240–1246

    Article  CAS  Google Scholar 

  101. Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS, Swart HC (2014) Vacuum 99:265–271

    Article  CAS  Google Scholar 

  102. Kim S, Jeong J-O, Lee S, Park J-S, Gwon H-J, Jeong SI, Hardy JG, Lim Y-M, Lee JY (2018) Sci Rep 8:3721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Atif M, Bongiovanni R, Yang J (2015) Polym Rev 55:90–106

    Google Scholar 

  104. Oldring PKT (ed) (1991) Chemistry and technology of UV and EB formulation for coatings, inks and paints. SITA Techn, London, Vols 1È5

    Google Scholar 

  105. Ravijst JP (1990) Proc Rad Tech Conf 1: 278 (Chicago)

    Google Scholar 

  106. Decker C (1998) Polym Int 45:133–141

    Article  CAS  Google Scholar 

  107. Pappas SP (ed) (1992) Radiation curing science and technology. Plenum Press, New York

    Google Scholar 

  108. Balan L, Burget D (2006) Euro Poly J 42(12):3180–3189

    Article  CAS  Google Scholar 

  109. Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) J Phys Chem C 111(21):7676–7681

    Article  CAS  Google Scholar 

  110. Shameli K, Ahmad MB, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Intern J Nanomed 5:875

    Article  CAS  Google Scholar 

  111. Forrest SR, Kaplan ML, Schmidt PH, Venkatesan T, Lovinger AJ (1982) App Phy Lett 41:708. https://doi.org/10.1063/1.93642

    Article  CAS  Google Scholar 

  112. Hioki T, Noda S, Sugiura M, Kakeno M, Yamada K, Kawamoto J (1983) Appl Phys Lett 43:30

    Article  CAS  Google Scholar 

  113. Fink D, Moller M, Chadderton LT, Cannington PH, Elliman RG, Mcdonald DC (1988) Nucl Inst Meth Phys Res B 32:125–130

    Article  Google Scholar 

  114. Goyal PK, Kumar V, Gupta R, Mahendia S, Sharma T, Kumar S (2011) Adv App Sci Res 2(3):227–231

    Google Scholar 

  115. Kumar S, Kumar R, Singh DP (2009) App Surf Sci 255:8014–8018

    Google Scholar 

  116. Prakash J, Tripathi A, Rigato V, Pivin JC, Tripathi J, Chae KH, Gautam S, Kumar P, Asokan K, Avasthi DK (2011) J Phys D Appl Phys 44:125302

    Article  CAS  Google Scholar 

  117. Prakash J, Tripathi A, Laxmi GVBS, Rigato V, Tripathi J, Avasthi DK (2013) Adv Mat Lett 4(6):408–412

    Article  CAS  Google Scholar 

  118. Prakash J, Tripathi A, Khan SA, Kumar S, Singh F, Tripathi JK, Tripathi J (2011) Rad Eff Defs Sol 166(8):682–688

    Article  CAS  Google Scholar 

  119. Zaporojtchenko V, Zekonyte J, Wille S, Schuermann U, Faupel F (2005) Nucl Inst Meth B 236:95–102

    Article  CAS  Google Scholar 

  120. Wang L, Angert N, Trautmann C, Vetter J (1995) J. Adhes Sci Techn 9:1523–1529

    Article  CAS  Google Scholar 

  121. Zaprorjtchnko V, Zenkonyte J, Faupel F (2007) Nucl Inst Meth B 265:139–145

    Article  CAS  Google Scholar 

  122. Mishra YK, Chakravadhanula VSK, Schurmann U, Kumar H, Kabiraj D, Ghosh S, Zaporojtchenko V, Avasthi DK, Faupel F (2008) Nucl Inst Meth B 266:1804–1809

    Article  CAS  Google Scholar 

  123. Prakash J, Tripathi J, Khan SA, Pivin JC, Singh F, Tripathi J, Kumar S, Avasthi DK (2010) Vacuum 84(11):1275–1279

    Article  CAS  Google Scholar 

  124. Biswas A, Avasthi DK, Fink D, Kanzow J, Schurmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Inst Meth B 217:39–50

    Article  CAS  Google Scholar 

  125. Singh F, Mohapatra S, Stoquert JP, Avasthi DK, Pivin JC (2009). 267:936–940

    CAS  Google Scholar 

  126. Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS (2013) Vacuum 90:59–64

    Article  CAS  Google Scholar 

  127. Singhal P, Rattan S (2016) J Phys Chem B 120(13):3403–3413

    Article  CAS  PubMed  Google Scholar 

  128. Efimov AM (1995) Optical constants of inorganic glasses. CRC Press, USA

    Google Scholar 

  129. Bach H, Neuroth N (1995) The properties of optical glass. Springer, Berlin

    Google Scholar 

  130. Fox AM (2010) Optical properties of solids, 2nd edn. Oxford University Press, New York

    Google Scholar 

  131. Oreski G, Tscharnuter D, Wallner GM (2008) Macromol Symp 265:124

    Article  CAS  Google Scholar 

  132. Kumar V, Goyal PK, Mahendia S, Gupta R, Sharma T, Kumar S (2011) Rad Eff Def Solids 166:109

    Article  CAS  Google Scholar 

  133. Migahed MD, Zidan HM (2006) Current App Phys 6:91

    Article  Google Scholar 

  134. Tauc J, Grigorovivi R, Vancu A (1966) Stat Sol 15:627–637

    Article  CAS  Google Scholar 

  135. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press

    Google Scholar 

  136. Datta T, Woollam JA, Notohamiprodjo W (1989) Phy Rev B 40:5956–5960

    Article  CAS  Google Scholar 

  137. Mostafavi M, Delcourt MO, Picq G (1993) J Radiat Phys Chem 41:453

    Article  CAS  Google Scholar 

  138. Linnert T, Mulvaney P, Henglein A et al (1990) J Am Chem Soc 112:4657–4664

    Article  CAS  Google Scholar 

  139. Sudeep PK, Kamat PV (2005) Chem Mater 17:5404–5410

    Article  CAS  Google Scholar 

  140. Janata E, Henglein A, Ershovt BG (1994) J Phys Chem 98:10888–10890

    Article  CAS  Google Scholar 

  141. Overbeek JTG (1982) Adv Colloid Interface Sci 15:251–277

    Article  CAS  Google Scholar 

  142. Temgire MK, Joshi SS (2004) Rad Phys Chem 71:1039–1044

    Article  CAS  Google Scholar 

  143. Wu W, Wang Y, Shi L, Zhu Q, Pang W, Xu G, Lu F (2005) Nanotechnology 16:3017–3022

    Article  CAS  Google Scholar 

  144. Nho Y, Moon S et al (2005) J Ind Eng Chem 11:159–164

    CAS  Google Scholar 

  145. Ramya CS, Savitha T, Selvasekarapandian S, Hirankumar G (2005) Ionics 11:436

    Article  CAS  Google Scholar 

  146. Link S, El-sayed MA (1999) J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  147. Kreibig U, Bour G, Hilger A, Gartz M (1999) Phys Stat Sol (a) 175:351–366

    Article  CAS  Google Scholar 

  148. Garcia MA (2011) J Phys D Appl Phys 44:283001

    Article  CAS  Google Scholar 

  149. Kumar G, Tripathi VK (2007) Appl Phys Lett 91:161503

    Article  CAS  Google Scholar 

  150. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Langmuir 12:909–912

    Article  CAS  Google Scholar 

  151. Singh F, Mohanta S, Stoguert JP, Avasthi DK, Pivin JC (2009) Nucl Instr Meth Phys Res B 267:936–940

    Article  CAS  Google Scholar 

  152. Avasthi DK, Mehta GK (2011) Swift heavy ions for materials engineering and nanostructuring. Springer Series in Materials Science, Berlin

    Book  Google Scholar 

  153. Abargues R, Marques-Hueso J, Canet-Ferrer J, Pedrueza E, Valdes JL, Jimenez E, Martınez-Pastor JP (2008) Nanotechnology 19:355308

    Article  CAS  PubMed  Google Scholar 

  154. Eisa WH, Abdel-Moneam YK, Shaaban Y, Abdel-Fattah AA, Zeid AMA (2011) Mater Chem Phys 128:109–113

    Article  CAS  Google Scholar 

  155. Sharma K, Chahal RP, Mahendia S, Tomar AK, Kumar S (2013) Rad Eff Def Solids 168(5):378–384

    Article  CAS  Google Scholar 

  156. Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592

    Article  CAS  Google Scholar 

  157. Fink D et al (1995) Radiat Eff Def Solids 133:193–208

    Article  CAS  Google Scholar 

  158. Sellmeier W (1871) Ann Phys Chem 143:271

    Google Scholar 

  159. Wemple SH, DiDomenico M (1970) Phys Rev B 3:1338–1351

    Article  Google Scholar 

  160. Bhar O, Pinto JC (1991) J Appl Polym Sci 42:2795–2809

    Article  Google Scholar 

  161. Lorimer JW (1972) Polymer 13:2274–2276

    Google Scholar 

  162. Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592

    Article  CAS  Google Scholar 

  163. Charis MNC et al (2011) J Appl Polym Sci 122:1572–1578

    Google Scholar 

  164. Kumar G, Singh DB, Tripathi VK (2006) J Phys D Appl Phys 39:4436–4439

    Article  CAS  Google Scholar 

  165. Gautam A, Ram S (2010) Mater Chem Phys 119:266–271

    Article  CAS  Google Scholar 

  166. Vij A, Singh S, Kumar R, Lochab SP, Kumar VVS, Singh N (2009) J Phys D Appl Phys 42:105103

    Article  CAS  Google Scholar 

  167. Finch CA (1973) Polyvinyl alcohol properties and application. Wiley, Hoboken

    Google Scholar 

  168. Mbhele ZH et al (2003) Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  169. Shah S, Singh NL, Gavade C, Shivakumar V, Sulania I, Tripathi A, Singh F, Avasthi DK, Upadhyay RV (2010) Integr Ferroelectr Int J 117:97–103

    Article  CAS  Google Scholar 

  170. Thomas PS, Stuart BH (1997) Spectro Chemica Acta: Part A 53:2275–2278

    Article  Google Scholar 

  171. Lin WC, Yang MC (2005) Macromol Rapid Commun 26:1942–1947

    Article  CAS  Google Scholar 

  172. Yu DG, Lin WC, Lin CH, Chang LM, Yang MC (2007) Mater Chem Phys 101:93–98

    Article  CAS  Google Scholar 

  173. Tripathi J, Keller JM, Das K, Tripathi S, Sripathi T (2012) J Phys Chem Solids 73:1026–1033

    Article  CAS  Google Scholar 

  174. Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, Berlin

    Book  Google Scholar 

  175. Macleod HA (2001) Thin film optical filters, 3rd edn. Institute of Physics Publishing, Bristol and Philadelphia

    Book  Google Scholar 

  176. Liu Y, Guy OJ, Patel J, Ashraf H, Knight N (2013) Microelectron Eng 110:418–421

    Article  CAS  Google Scholar 

  177. Askar K, Phillips BM, Fang Y, Choi B, Gozubenli N, Jiang P, Jiang B (2013) Colloids Surf: A Physicochem Eng Aspects 439:84–100

    Article  CAS  Google Scholar 

  178. Jin KW, Cai S, Hua W, Da S, Xiu F, Jing L (2010) Chin Phys B 19:044210

    Article  Google Scholar 

  179. Chahal RP, Mahendia S, Tomar AK, Kumar S (2016) Opt Mater 52:237–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Mahendia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahendia, S., Chahal, R.P., Tomar, A.K., Wadhwa, H., Kumar, S. (2019). Radiation-Induced Effects on the Properties of Polymer-Metal Nanocomposites. In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_5

Download citation

Publish with us

Policies and ethics