Skip to main content
Log in

On the nature of metal passivation during cathode depolarization by oxygen dissolved in an electrolyte

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A hypothesis is suggested and grounded according to which a metal is passivated due to the formation of an oxide whose composition corresponds to the maximum oxygen concentration in the homogeneity area of this oxide on the metal surface. In this case, the thermodynamic probability of a corrosion process becomes close to zero. Experimental data are obtained on the dependence of the thermodynamic activity of carbon on its concentration in the homogeneity areas of cubic vanadium and titanium carbides. The dependences derived from these data are assumed to be also valid for metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Tomashov and G. P. Chernova, Passivity and Protection of Metals against Corrosion (Nauka, Moscow, 1965).

    Google Scholar 

  2. V. A. Kireev, Course of Physical Chemistry (Goskhimizdat, Moscow, 1956).

    Google Scholar 

  3. G. Davies and A. James, Dictionary of Electrochemistry (Macmillan Press, London, 1976).

    Google Scholar 

  4. N. N. Sirota, Physicochemical Nature of Variable Composition Phases (Nauka I Tekhnika, Minsk, 1970).

    Google Scholar 

  5. N. P. Zhuk, Theory of Corrosion and Protection of Metals (Metallurgiya, Moscow, 1976).

    Google Scholar 

  6. V. I. Alekseev and Yu. N. Surovoi, “Technique of Studying the Thermodynamic Properties of Alloys,” Zavod. Lab. XXXI(11), 1356–1358 (1965).

    Google Scholar 

  7. V. I. Alekseev and E. M. Parnis, “Radiometric Method for Determining the Thermodynamic Activity of Carbon in Steels and Alloys,” Zavod. Lab., No. 10, 1207–1208 (1972).

    Google Scholar 

  8. S. Aronson and J. Sadofsky, “Thermodynamic of Carbide VCx,” J. Inorgan. Nucl. Chem. 27, 1769–1773 (1965).

    Article  CAS  Google Scholar 

  9. E. Fromm and E. Gebhard, Gase und Kohlenstoff in Metallen (Springer, Berlin, 1976).

    Book  Google Scholar 

  10. N. D. Tomashov, Theory of Corrosion and Protection of Metals (MacMillan, New York, 1966).

    Google Scholar 

  11. K. Schwabe and W. D. Arnold, in Proceedings of 5th International Congress on Metallic Corrosion (NACE, Houston, 1974), p. 760.

    Google Scholar 

  12. R. Todoroki, S. Kado, and A. Teremae, in Proceedings of 5th International Congress on Metallic Corrosion (NACE, Houston, 1974), p. 764.

    Google Scholar 

  13. L. Onsager, “Reciprocal Relation in Irreversible Processes,” J. Phys. Rev. 37, 405 (1931).

    Article  CAS  Google Scholar 

  14. J. Kruger, J. Electrochem. Soc. 110 (6) (1963).

  15. H. Uhlig, D. Triadis, and M. S. Stern, J. Electrochem. Soc. 102(1), 59 (1955).

    Article  CAS  Google Scholar 

  16. T. P. Hear and U.R. Evans, J. Electrochem. Soc. 99(5), 212 (1962).

    Article  Google Scholar 

  17. M. Nagyama and M. Cohen, J. Electrochem. Soc. 109(9), 784 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Yusupov.

Additional information

Original Russian Text © V.I. Alekseev, V.S. Yusupov, M.M. Perkas, G.Yu. Lazarenko, 2012, published in Metally, 2012, No. 1, pp. 60–68.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, V.I., Yusupov, V.S., Perkas, M.M. et al. On the nature of metal passivation during cathode depolarization by oxygen dissolved in an electrolyte. Russ. Metall. 2012, 48–54 (2012). https://doi.org/10.1134/S0036029512010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029512010028

Keywords

Navigation