Skip to main content
Log in

Alginate–Chitosan Polyelectrolyte Complexes As Carriers for Fluorinated Tetraphenylporphyrin in Photosensitizing Systems of Singlet Oxygen Generation

  • PHYSICAL CHEMISTRY OF DISPERSIVE SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Water-insoluble photosensitizing (PS) systems active in the generation of singlet 1O2 oxygen are obtained by immobilizing fluorinated tetraphenylporphyrin (FTPP) from a solution in acetone on films of polyelectrolyte complexes based on sodium alginate (SA) and chitosan (CT), and on solid water-insoluble gels of alginate and chitosan. The obtained polymer PS systems are used to establish the intensity of the photoluminescence of singlet oxygen in D2O and the activity of the photocatalytic oxidation of tryptophan in water. It is shown that the photocatalytic activity in the tryptophan oxidation of fluorinated tetraphenylporphyrin immobilized on a SA–CT polyelectrolyte complex and alginate solid gel is higher than that of FTPP immobilized on chitosan solid gel. Spectral-luminescent properties of polysaccharide–FTPP systems and the surface structure of carriers are studied via atomic force microscopy to determine the mechanism of the increase in porphyrin activity when it is fixed on alginate-containing carriers. It is suggested that aspects of the supramolecular structure of solid gels are responsible for the increase in the photocatalytic activity of FTPP upon immobilization on alginate-containing polysaccharide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. K. Deda, B. A. Iglesias, E. Alves, et al., Molecules 25, 2080 (2020). https://doi.org/10.3390/molecules25092080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. B. Solov’eva, N. A. Aksenova, N. N. Glagolev, N. S. Melik-Nubarov, A. V. Ivanov, V. I. Volkov, and A. V. Chernyak, Russ. J. Phys. Chem. B 6, 433 (2012). https://doi.org/10.1134/S1990793112060061

    Article  CAS  Google Scholar 

  3. S. Hampton, Diabetic Foot. 7, 162 (2004).

    Google Scholar 

  4. M. Salehi, A. Ehterami, S. Farzamfar, et al., Drug Deliv. Transl. Res. 11, 142 (2021). https://doi.org/10.1007/s13346-020-00731-6

    Article  CAS  PubMed  Google Scholar 

  5. G. G. Belozerskaya, V. A. Kabak, and V. A. Makarov, RF Patent No. 2660582 (2018).

  6. K. A. D. F. Castro, N. M. M. Moura, F. Figueira, et al., Int. J. Mol. Sci. 20, 2522 (2019). https://doi.org/10.3390/ijms20102522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. B. Solovieva, T. G. Rudenko, N. N. Glagolev, et al., J. Photochem. Photobiol. B 210, 111954 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111954

  8. M. Sharma, A. Dube, and S. K. Majumder, Lasers Med. Sci. 36, 763 (2021). https://doi.org/10.1007/s10103-020-03083-2

    Article  PubMed  Google Scholar 

  9. O. Brovko, I. Palamarchuk, N. Gorshkova, et al., Izv. Ufim. Nauch. Tsentra RAN 2, 45 (2018). https://doi.org/10.31040/2222-8349-2018-2-3-45-49

    Article  Google Scholar 

  10. D. Kulig, A. Zimoch-Korzycka, Z. Król, et al., Molecules 22, 98 (2017). https://doi.org/10.3390/molecules22010098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Zare-Gachi, H. Daemi, J. Mohammadi, et al., Mater. Sci. Eng. C 107, 110321 (2020). https://doi.org/10.1016/j.msec.2019.110321

  12. I. V. Shershnev, N. N. Glagolev, N. A. Bragina, P. S. Timashev, V. N. Bagratashvili, and A. B. Solovieva, Russ. J. Phys. Chem. B 8, 1095 (2014). https://doi.org/10.1134/S1990793114080119

    Article  CAS  Google Scholar 

  13. A. S. Kopylov, N. A. Aksenova, M. A. Savko, I. V. Shershnev, T. S. Zarkhina, A. V. Krivandin, O. V. Shatalova, A. V. Cherkasova, P. S. Timashev, and A. B. Solovieva, Russ. J. Phys. Chem. A 96, 444 (2022). https://doi.org/10.1134/S0036024422020133

    Article  CAS  Google Scholar 

  14. T. S. Demina, A. S. Kuryanova, N. A. Aksenova, et al., RSC Adv. 64, 37652 (2019). https://doi.org/10.1039/C9RA07667K

    Article  Google Scholar 

  15. A. V. Cherkasova, N. A. Aksenova, and T. S. Zarkhina, Russ. J. Phys. Chem. A 96, 2563 (2022). https://doi.org/10.1134/S003602442211005X

    Article  CAS  Google Scholar 

  16. T. S. Zarkhina, N. A. Aksenova, and A. B. Solov’eva, Russ. J. Phys. Chem. A 91, 998 (2017). https://doi.org/10.1134/S0036024417060322

    Article  CAS  Google Scholar 

  17. O. V. Sadykova, A. V. Krivandin, N. A. Aksenova, V. A. Timofeeva, O. V. Shatalova, S. L. Kotova, and A. B. Solovieva, Polym. Sci., Ser. A 63, 154 (2021). https://doi.org/10.1134/S0965545X21020103

    Article  CAS  Google Scholar 

  18. Singlet Oxygen Applications in Biosciences and Nanosciences, Ed. by S. Nonell and C. Flors (Cambridge Univ. Press, Cambridge, 2016), Vol. 1, p. 23.

    Google Scholar 

  19. O. S. Brovko, I. A. Palamarchuk, T. A. Boitsova, et al., Macromol. Res. 23, 1059 (2015). https://doi.org/10.1007/s13233-015-3140-z

    Article  CAS  Google Scholar 

  20. D. Hermanto, M. Mudasir, D. Siswanta, et al., J. Math. Fundam. Sci. 51, 309 (2019). https://doi.org/10.5614/j.math.fund.sci.2019.51.3.8

    Article  CAS  Google Scholar 

  21. J. Ayarza, Y. Coello, and J. Nakamatsu, Int. J. Polym. Anal. Charact. 22, 1 (2016). https://doi.org/10.1080/1023666X.2016.1219834

    Article  CAS  Google Scholar 

  22. A. Montembault, C. Viton, and A. Domard, Biomacromolecules 6, 653 (2005). https://doi.org/10.1021/bm049593m

    Article  CAS  PubMed  Google Scholar 

  23. I. V. Klimenko, M. A. Gradova, O. V. Gradov, S. B. Bibikov, and A. V. Lobanov, Russ. J. Phys. Chem. B 14, 436 (2020). https://doi.org/10.1134/S1990793120030070

    Article  CAS  Google Scholar 

  24. A. B. Solovieva, V. E. Belyaev, N. N. Glagolev, V. I. Volkov, V. N. Luzgina, G. V. Vstovskii, and S. F. Timashev, Russ. J. Phys. Chem. A 79, 635 (2005).

    Google Scholar 

  25. E. I. Zen’kevich, Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va Mendeleeva) 61, 110 (2017).

Download references

Funding

This study was conducted in the framework of the Russian Government assignment no. 122040400099-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kopylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.S., Aksenova, N.A., Shershnev, I.V. et al. Alginate–Chitosan Polyelectrolyte Complexes As Carriers for Fluorinated Tetraphenylporphyrin in Photosensitizing Systems of Singlet Oxygen Generation. Russ. J. Phys. Chem. 97, 2792–2800 (2023). https://doi.org/10.1134/S0036024423120178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120178

Keywords:

Navigation