Skip to main content
Log in

The Influence of Effect of Polysaccharides and Polyvinylpyrrolidone on the Photocatalytic Activity of Chlorin e6 in Tryptophan Oxidation

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect amphiphic polymer poly-N-vinylpyrrolidone (PVP) and polysaccharides (PSs), sodium alginate (SA) and hyaluronic acid (HA), have on the photosensitizing activity of chlorin e6 (Ce6) in the reaction of tryptophan oxidation is established. This reaction is considered a model in searching for the most efficient pharmaceutical formulations of photosensitizers for antimicrobial photodynamic therapy. It is shown that the initial photosensitizing activity of Ce6, characterized by effective rate constant keff of tryptophan oxidation, grows as binary (Ce6–PVP and Ce6–SA(HA)) and (to a greater extent) ternary systems (Ce6–PVP–SA and Ce6–PVP–SA(HA)) form in aqueous solutions. This rise in activity is found to be related to disaggregation of the associates of photosensitizer (PhS) molecules initially present in aqueous solutions, resulting from the formation of complex bonds between PhS molecules and fragments of polymers added to the solution. This conclusion is confirmed for the considered binary and ternary systems by the accumulated data of electronic absorption spectra and fluorescence spectra of chlorin e6 in the absence of polymers (PVP, SA, and HA) and after they are added to the reaction system, and by 1H NMR data. In light of the most recent findings (according to which each polymeric component (PVP, SA, and HA) affects the activity of PhS, while almost no direct interaction between PVP and PS is detected in the 1H NMR spectra), ternary photosensitizing systems form in aqueous media during the formation of intertwining PVP–PS polymeric chains upon exposure to local hydrodynamic flows, followed by complex bonding between PhS molecules and fragments of both polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Huang, T. Zhiyentayev, Y. Xuan, et al., Lasers Surg. Med. 43, 313 (2011).

    Article  Google Scholar 

  2. M. R. Hamblin and T. Hasan, Photochem. Photobiol. Sci. 3, 436 (2004).

    Article  CAS  Google Scholar 

  3. A. Shrestha and A. Kishen, Basic Res. Technol. 38, 1275 (2012).

    Google Scholar 

  4. A. Makowski and W. Wardas, Curr. Top. Biophys. 25, 19 (2001).

    CAS  Google Scholar 

  5. M. Wainwright, Antimicrob. Chemother. 42, 13 (1998).

    Article  CAS  Google Scholar 

  6. G. Jori and S. B. Brown, Photochem. Photobiol. Sci. 3, 403 (2004).

    Article  CAS  Google Scholar 

  7. A. V. Geinits, P. I. Tolstykh, and V. A. Derbenev, Photodynamic Therapy of Purulent and Non-Healing Wounds: A Manual for Doctors (Meditsina, Moscow, 2004) [in Russian].

    Google Scholar 

  8. K. Alenezi, A. Tovmasyan, I. Batinic-Haberle, et al., Photodiagn. Photodyn. Ther. 17, 154 (2017).

    Article  CAS  Google Scholar 

  9. E. V. Filonenko and L. G. Serova, Biomed. Photon. 5 (2), 26 (2016).

    Article  Google Scholar 

  10. T. M. Zhiyentayev, U. T. Boltaev, A. B. Solov’eva, et al., Photochem. Photobiol. 90, 171 (2014).

    Article  CAS  Google Scholar 

  11. A. B. Solov’eva, A. L. Spokoinyi, T. G. Rudenko, et al., Klin. Prakt., No. 2, 38 (2016).

  12. P. I. Tolstykh, A. B. Solov’eva, O. B. Tamrazova, et al., Lazer. Med. 15 (4), 55 (2011).

    Google Scholar 

  13. V. B. Tsvetkov, A. B. Solov’eva, and N. S. Melik-Nubarov, Phys. Chem. Chem. Phys. 16, 10903 (2014).

    Article  CAS  Google Scholar 

  14. T. G. Rudenko, A. B. Shekhter, A. E. Guller, et al., Photochem. Photobiol. 90, 1413 (2014).

    Article  CAS  Google Scholar 

  15. M. V. Shirmanova, A. I. Gavrina, N. A. Aksenova, et al., J. Anal. Bioanal. Tech. S1, 8 (2014).

    Google Scholar 

  16. A. B. Solov’eva, A. S. Kopylov, M. A. Savko, et al., Sci. Rep. 7, 12640 (2017).

    Article  Google Scholar 

  17. M. A. Savko, N. A. Aksenova, A. K. Akishina, O. V. Khasanova, N. N. Glagolev, V. D. Rumyantseva, K. A. Zhdanova, A. L. Spokoinyi, and A. B. Solov’eva, Russ. J. Phys. Chem. A 91, 2260 (2017).

    Article  CAS  Google Scholar 

  18. H. Park, W. Park, and K. Na, Biomaterials 35, 7963 (2014).

    Article  CAS  Google Scholar 

  19. A. B. Solovieva et al., Laser Phys. 19 (4), 1 (2009).

    Article  Google Scholar 

  20. M. P. Tolstykh, G. N. Klebanov, A. B. Shekhter, et al., Antioxidants and Laser Radiation in the Treatment of Wounds and Trophic Ulcers (EKO, Moscow, 2001) [in Russian].

    Google Scholar 

  21. M. P. Tolstykh, G. N. Klebanov, Yu. V. Klimov, et al., Biomed. Radioelektron., No. 2, 15 (2001).

  22. Yu. S. Vinnik, S. V. Yakimov, E. Yu. Teplyakov, et al., Sib. Med. Zh., No. 4, 35 (2004).

  23. A. B. Solovieva, V. V. Kardumian, N. A. Aksenova, et al., Sci. Rep. 8, 8042 (2018).

    Article  Google Scholar 

  24. N. A. Krishtanova, M. Yu. Safonova, V. Ts. Bolotova, et al., Vestn. VGU, No. 1, 212 (2005).

    Google Scholar 

  25. S. Talegaonkar, F. J. Ahmad, K. Kohli, et al., Pharm. Biopharm. 68, 513 (2008).

    Google Scholar 

  26. J. E. Scott, in Proceedings of the 143rd Ciba Foundation Symposium on the Biology of Hyaluronan, Ed. by D. Evered and J. Whelan (Wiley, 2007), p. 6.

  27. N. Sh. Kaisheva, L. P. Mykots, and Yu. K. Vasilenko, Khim.-Farm. Zh. 38 (1), 31 (2004).

    CAS  Google Scholar 

  28. E. J. Osburn, L.-K. Chau, S.-Y. Chen, et al., Langmuir 12, 4784 (1996).

    Article  CAS  Google Scholar 

  29. N. A. Aksenova, T. Oles, T. Sarna, et al., Laserphysics 22, 1642 (2012).

    CAS  Google Scholar 

  30. V. V. Kardumyan, N. A. Aksenova, A. A. Chernyak, et al., Laser Phys. 25, 6002 (2014).

    Google Scholar 

  31. Yu. A. Gorokh, N. A. Aksenova, A. B. Solov’eva, V. A. Ol’shevskaya, A. V. Zaitsev, M. A. Lagutina, V. N. Luzgina, A. F. Mironov, and V. N. Kalinin, Russ. J. Phys. Chem. A 85, 871 (2011).

    Article  CAS  Google Scholar 

  32. N. N. Glagolev, S. Z. Rogovina, A. B. Solov’eva, et al., Russ. J. Phys. Chem., Suppl., 72 (2006).

  33. N. A. Aksenova, T. M. Zhientaev, A. A. Brilkina, et al., Photon Lasers Med. 2, 189 (2013).

    Article  CAS  Google Scholar 

  34. E. Shvaichak, Ross. Zh. Biomekh., Part 1 7 (3), 87 (2003).

    Google Scholar 

  35. T. N. Yudanova and I. V. Reshetov, Khim.-Farm. Zh. 40 (2), 24 (2006).

    Google Scholar 

Download references

Funding

This work was performed as part of a State Task (topic V. 46.14, project nos. 0082-2014-0006 and AAAA-A17-117032750202-6, “Producing Binary and Ternary Porphyrin-containing Complexes of Chlorin e6 with PVP and Polysaccharides SA (HA) and Chlorin e6–PVP–SA (HA) and Investigating Their Spectral Characteristics”); and by the Russian Foundation for Basic Research (project no. 17-02-00294, “Determining the Kinetic Parameters of Tryptophan Photooxidation in the Presence of the Produced Photosensitizing Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Solov’eva.

Additional information

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’eva, A.B., Khasanova, O.V., Aksenova, N.A. et al. The Influence of Effect of Polysaccharides and Polyvinylpyrrolidone on the Photocatalytic Activity of Chlorin e6 in Tryptophan Oxidation. Russ. J. Phys. Chem. 93, 2507–2514 (2019). https://doi.org/10.1134/S0036024419110293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419110293

Keywords:

Navigation