Skip to main content
Log in

Thermodynamic Properties of L-Asparagine Monohydrate

  • HEAT CAPACITY: EXPERIMENTS AND CALCULATIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Differential scanning calorimetry is used to study the temperature and enthalpy of melting of L‑asparagine monohydrate. Its thermal stability is estimated. Low-temperature adiabatic calorimetry is used to measure heat capacity in the 8–355 K range of temperatures. An anomaly in the heat capacity curve is detected in the region of 265–275 K and studied. A single crystal X-ray diffraction study of the sample is performed in the 113–281 K range of temperatures. The main thermodynamic functions and the functions of formation in the condensed state are calculated at 298 K using the experimental and literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell, Harper’s Biochemistry (Appleton and Lange, Norwlak, CN, 1988).

    Google Scholar 

  2. G. Wu, Amino Acids (CRC, Boca Raton, FL, 2013).

    Book  Google Scholar 

  3. M. Friedman, J. Agric. Food Chem. 47, 3457 (1999).

    Article  CAS  Google Scholar 

  4. F. Yogam, I. Vetha Potheher, R. Jeyasekaran, et al., J. Therm. Anal. Calorim. 114, 1153 (2013).

    Article  CAS  Google Scholar 

  5. A. Meister, in The Enzymes, Ed. by P. D. Boyer (Elsevier, Amsterdam, 1974), Vol. 10, p. 561.

    Google Scholar 

  6. M. Contineanu, I. Contineanu, A. Neacsu, et al., Radiat. Phys. Chem. 79, 1047 (2010).

    Article  CAS  Google Scholar 

  7. M. Contineanu, A. Neacsu, I. Contineanu, et al., J. Radioanal. Nucl. Chem. 295, 379 (2013).

    Article  CAS  Google Scholar 

  8. H. M. Huffman and H. Borsook, J. Am. Chem. Soc. 54, 4297 (1932).

    Article  CAS  Google Scholar 

  9. J. O. Hutchens, A. G. Cole, R. A. Robie, et al., J. Biol. Chem. 238, 2407 (1963).

    Article  CAS  Google Scholar 

  10. K. K. Kelley, G. S. Parks, and H. M. Huffman, J. Phys. Chem. 33, 1802 (1929).

    Article  CAS  Google Scholar 

  11. A. G. Cole, J. O. Hutchens, R. A. Robie, et al., J. Am. Chem. Soc. 82, 4807 (1960).

    Article  CAS  Google Scholar 

  12. L. F. Tietze and Th. Eicher, Reactions and Syntheses: In the Organic Chemistry Laboratory (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  13. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  14. O. V. Krol, A. I. Druzhinina, and R. M. Varushchenko, J. Chem. Thermodyn. 40, 549 (2008).

    Article  CAS  Google Scholar 

  15. D. Yu. Ilin, S. V. Tarazanov, A. I. Druzhinina, et al., J. Chem. Thermodyn. 158, 106447 (2021).

  16. B. W. Mangum, P. Bloembergen, M. V. Chattle, et al., Metrologia 34, 427 (1997).

    Article  Google Scholar 

  17. R. Stevens and J. Boerio-Goates, J. Chem. Thermodyn. 36, 857 (2004).

    Article  CAS  Google Scholar 

  18. T. B. Douglas, G. T. Furukawa, R. E. McCoskey, et al., J. Res. Natl. Bur. Stand. 53, 139 (1954).

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick, Acta Crystallogr., Sect. A 71, 3 (2015).

    Article  Google Scholar 

  20. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015).

    Article  Google Scholar 

  21. F. Rodante, G. Marrosu, and G. Catalani, Thermochim. Acta 194, 197 (1992).

    Article  CAS  Google Scholar 

  22. I. Contineanu, A. Neacsu, and S. T. Perisanu, Thermochim. Acta 497, 96 (2010).

    Article  CAS  Google Scholar 

  23. D. R. Lide, Handbook of Chemistry and Physics, 84th ed. (CRC, Boca Raton, FL, 2004).

    Google Scholar 

  24. R. Flaig, T. Koritsanszky, B. Dittrich, et al., J. Am. Chem. Soc. 124, 3407 (2002).

    Article  CAS  Google Scholar 

  25. R. Flaig, T. Koritsanszky, J. Janczak, et al., Angew. Chem., Int. Ed. Engl. 38, 1397 (1999).

    Article  CAS  Google Scholar 

  26. CODATA Key Values for Thermodynamics, Ed. by J. D. Cox, D. D. Wagman, and V. A. Medvedev (Hemisphere, New York, 1989).

    Google Scholar 

  27. H. M. Huffman, E. L. Ellis, and S. W. Fox, J. Am. Chem. Soc. 58, 1728 (1936).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. AAAA-A16-121031300039-1 “Chemical Thermodynamics and Materials Science.” It was supported by the National Science Project, the Development Program of Moscow State University, and Moscow State University’s shared resource center Technologies for Preparing New Nanostructured Materials and Their Comprehensive Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Druzhinina.

Additional information

Translated by O. Kadkin

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deiko, Y.A., Il’in, D.Y., Druzhinina, A.I. et al. Thermodynamic Properties of L-Asparagine Monohydrate. Russ. J. Phys. Chem. 96, 1840–1848 (2022). https://doi.org/10.1134/S0036024422090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422090060

Keywords:

Navigation