Skip to main content
Log in

Effect of Amphiphilic Polymers on the Activity of Rose Bengal during the Photooxidation of Tryptophan in an Aqueous Medium

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the effect such amphiphilic polymers (APs) as pluronics F-127 and F-108, poly-N-vinylpirrolidone (PVP), and polyethylene glycol (PEG) have on the photocatalytic activity of Rose Bengal, a xanthene dye, in the photooxidation of tryptophan in water. Rose Bengal (RB) is an efficient photosensitizer (PS) in the regeneration of singlet 1О2 oxygen and is present in a solution in the form of associates. It is shown that all of the above APs raise the effective rate constant of tryptophan photooxidation, which is usually explained by the partial disaggregation of such associates. The strongest effect is in this case observed when using pluronic F-108. When using APs, the electron absorption and fluorescence spectra of the xanthene dye is transformed somewhat. A bathochromic shift (5–15 nm) of the dye absorption bands and an increase in RB photoluminescence (2–5 times) are observed. RB fluorescence is the strongest strongest when PVP is added. Dynamic light scattering shows that the size of RB particles is reduced 1.3–1.5 times when using pluronic F-108 and PVP. The observed patterns indicate there is interaction between the xanthene dye and APs. Such RB–AP based systems are promising for use as preparations for theranostics (i.e., visualizing fluorescence and treating oncological and nononcological tumors by means of photodynamic therapy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. H. Ryu, S. Lee, S. Son, et al., J. Control. Release 190, 477 (2014). https://doi.org/10.1016/j.jconrel.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  2. L. B. Josefsen and R. W. Boyle, Theranostics 2, 916 (2012). https://doi.org/10.7150/thno.4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. V. I. Chernov, O. D. Bragina, I. G. Sinilkin, et al., Vestn. Rentgenol. Radiol. 97, 306 (2016). https://doi.org/10.20862/0042-4676-2016-97-5-306-313

    Article  CAS  PubMed  Google Scholar 

  4. W. Sun, L. Luo, Y. Feng, et al., Adv. Mater. 32, 1 (2020). https://doi.org/10.1002/adma.202000377

    Article  CAS  Google Scholar 

  5. J. Qin, N. Kunda, G. Qiao, et al., Cell Death Dis. 8 (2), 1 (2017). https://doi.org/10.1038/cddis.2016.473

    Article  CAS  Google Scholar 

  6. A. Uppal, B. Jain, P. K. Gupta, et al., Photochem. Photobiol. 87, 1146 (2011). https://doi.org/10.1111/j.1751-1097.2011.00967.x

    Article  CAS  PubMed  Google Scholar 

  7. A. V. Maker, B. Prabhakar, and K. Pardiwala, J. Clin. Cell. Immunol. 6, 5 (2015). https://doi.org/10.4172/2155-9899.1000343

    Article  CAS  Google Scholar 

  8. S. Demartis, A. Obinu, E. Gavini, et al., Dye. Pigment 188, 1 (2021). https://doi.org/10.1016/j.dyepig.2021.109236

    Article  CAS  Google Scholar 

  9. G. Fila, K. Kasimova, Y. Arenas, et al., Front. Microbiol. 7, 1 (2016). https://doi.org/10.3389/fmicb.2016.01258

    Article  Google Scholar 

  10. R. D. Rossoni, J. C. Junqueira, E. L. S. Santos, et al., Lasers Med. Sci. 25, 581 (2010). https://doi.org/10.1007/s10103-010-0765-1

    Article  PubMed  Google Scholar 

  11. G. Amescua, A. Arboleda, N. Nikpoor, et al., Cornea 36, 1141 (2017). https://doi.org/10.1097/ICO.0000000000001265

    Article  PubMed  PubMed Central  Google Scholar 

  12. V. G. Kornisheva, Probl. Med. Mikol. 17 (1), 3 (2015).

    Google Scholar 

  13. I. E. Kochevar and R. W. Redmond, Methods Enzymol. 319, 20 (2000). https://doi.org/10.1016/s0076-6879(00)19004-4

    Article  CAS  PubMed  Google Scholar 

  14. T. P. Paulino, P. P. Magalhaes, G. Thedei, et al., Mol. Biol. Educ. 33, 46 (2005). https://doi.org/10.1002/bmb.2005.494033010424

    Article  CAS  Google Scholar 

  15. D. Xu and D. C. Neckers, J. Photochem. Photobiol., A 40, 361 (1987). https://doi.org/10.1016/1010-6030(87)85013-X

    Article  CAS  Google Scholar 

  16. D. C. Neckers, J. Photochem. Photobiol., A 47, 1 (1989). https://doi.org/10.1016/1010-6030(89)85002-

    Article  CAS  Google Scholar 

  17. P. Fini, M. Castagnolo, L. Catucci, et al., Thermochim. Acta 418, 33 (2004). https://doi.org/10.1016/j.tca.2003.11.041

    Article  CAS  Google Scholar 

  18. A. Shrestha and A. Kishen, Photochem. Photobiol. 88, 577 (2012). https://doi.org/10.1111/j.1751-1097.2011.01026.x

    Article  CAS  PubMed  Google Scholar 

  19. X. L. Wang, Y. Zeng, Y. Z. Zheng, et al., Chem. Eur. J. 17, 11223 (2011). https://doi.org/10.1002/chem.201100975

    Article  CAS  PubMed  Google Scholar 

  20. N. A. Aksenova, T. M. Zhientaev, A. A. Brilkina, et al., Photon. Lasers Med. 1, 189 (2012). https://doi.org/10.1515/plm-2013-0011

    Article  CAS  Google Scholar 

  21. T. G. Rudenko, A. B. Shekhter, A. E. Guller, et al., Photochem. Photobiol. 90, 1413 (2014). https://doi.org/10.1111/php.12340

    Article  CAS  PubMed  Google Scholar 

  22. E. V. Batrakova, T. Y. Dorodnych, E. Y. Klinskii, et al., Br. J. Cancer. 74, 1545 (1996). https://doi.org/10.1038/bjc.1996.587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. B. Mendes, S. Kassumeh, A. Aguirre-Soto, et al., Photochem. Photobiol., 1 (2021). https://doi.org/10.1111/php.13379

  24. C. C. Chang, Y. T. Yang, J. C. Yang, et al., Dye. Pigment 79, 170 (2008). https://doi.org/10.1016/j.dyepig.2008.02.003

    Article  CAS  Google Scholar 

  25. Yu. E. Kirsh, Poly-N-Vinylpyrrolidone and Other Poly-N-Vinylamides (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  26. K. P. Ghiggino, J. M. Brown, A. Launikonis, et al., Aust. J. Chem. 41, 9 (1988). https://doi.org/10.1071/CH9880009

    Article  CAS  Google Scholar 

  27. M. Maruthamuthu and M. Sobhana, J. Polym. Sci. A 17, 3159 (1979). https://doi.org/10.1002/pol.1979.170171008

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. 0082-2019-0012. It was supported by the Russian Foundation for Basic Research, project no. 20-32-90097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuryanova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryanova, A.S., Aksenova, N.A., Savko, M.A. et al. Effect of Amphiphilic Polymers on the Activity of Rose Bengal during the Photooxidation of Tryptophan in an Aqueous Medium. Russ. J. Phys. Chem. 96, 1106–1111 (2022). https://doi.org/10.1134/S0036024422050168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422050168

Keywords:

Navigation