Skip to main content
Log in

Effect of the Wavelength and Intensity of Excitation Light on the Efficiency of Photogeneration of Singlet Oxygen by Photodithazine in the Presence of Pluronic F127 in Model Processes of Photo-Oxidation

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the effect amphiphilic polymer Pluronic F127 has on the activity and photostability of photodithazine (PZ) in the photogeneration of singlet oxygen (1О2) in a model reaction of photo-oxidation of tryptophan in water upon excitation with light at λ = 400 and 660 nm at different light power densities. The highest photocatalytic activity and photostability of photodithazine in 1O2 generation are observed upon excitation with light at a wavelength of 400 nm, a medium radiation power density, and in the presence of Pluronic F127 in the reaction medium. The model reactions can be used to select the photosensitizers (PS) of the system (the presence of amphiphilic polymer and other systems added along with photosensitizers) and the modes of the low-energy photodynamic effects on substrates characteristic of each photosensitizer that are most favorable for therapy (i.e., that contribute to the initiation of regenerative and immune processes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Juzeniene, K. P. Nielsen, and J. E. Moan, J. Environ. Pathol. Toxicol. Oncol. 25, 7 (2006).

    Article  CAS  Google Scholar 

  2. S. B. Brown, E. A. Brown, and I. Walker, Lancet Oncol. 5, 497 (2004).

    Article  CAS  Google Scholar 

  3. A. A. Krasnovsky, Jr., Biophysics 49, 289 (2004).

    Google Scholar 

  4. P. G. Jonson, D. A. Bellnier, and B. W. Henderson, Photochem. Photobiol. 57, 50 (1993).

    Google Scholar 

  5. B. W. Henderson and D. A. Bellnier, Ciba Found. Symp. 146, 112 (1989).

    CAS  PubMed  Google Scholar 

  6. F. Wilkinson, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 24, 663 (1995).

    Article  CAS  Google Scholar 

  7. J. S. McCaughan, Jr., Drugs Aging 15, 49 (1999).

    Article  CAS  Google Scholar 

  8. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, et al., Lasers Med. Sci. 24, 259 (2009).

    Article  CAS  Google Scholar 

  9. G. Canti, A. de Simone, and M. Korbelik, Photochem. Photobiol. Sci. 1, 79 (2002).

    Article  CAS  Google Scholar 

  10. R. R. Allison and K. Moghissi, Clin. Endosc. 46, 24 (2013).

    Article  Google Scholar 

  11. A. L. Akopov, N. V. Kazakov, A. A. Rusanov, and A. Karlson, Fotodin. Terap. Fotodiagn., No. 2, 9 (2015).

  12. Optical Biomedical Diagnostics, Ed. by V. V. Tuchin (Fizmatlit, Moscow, 2007), Vols. 1, 2 [in Russian].

    Google Scholar 

  13. I. V. Krasnikov, V. E. Privalov, A. Yu. Seteikin, and A. E. Fotiadi, Vestn. SPbGU, Ser. 11, No. 4 (2013).

  14. A. B. Solovieva, P. I. Tolstih, N. S. Melik-Nubarov, et al., Laser Phys., No. 5, 1068 (2010).

  15. N. L. Oleinick, R. L. Morris, and I. Belichenko, Photochem. Photobiol. Sci., No. 1, 1 (2002).

  16. X. Ding, Q. Xu, F. Liu, et al., Cancer Lett. 26, 43 (2004).

    Article  Google Scholar 

  17. B. W. Henderson and J. M. Donovan, Cancer Res. 49, 6896 (1989).

    CAS  PubMed  Google Scholar 

  18. B. W. Henderson, B. Owczarczak, J. Sweeney, and T. Gessner, Photochem. Photobiol. 56, 513 (1992).

    Article  CAS  Google Scholar 

  19. M. L. Agarwal, M. E. Clay, E. J. Harvey, H. H. Evans, et al., Cancer Res. 51, 5993 (1991).

    CAS  PubMed  Google Scholar 

  20. E. A. Machinskaya and V. I. Ivanova-Radkevich, Fotodin. Terap. Fotodiagn., No. 4, 19 (2013).

  21. T. G. Rudenko, A. B. Shekhter, A. E. Guller, N. A. Aksenova, et al., Photochem. Photobiol. 90, 1413 (2014).

    Article  CAS  Google Scholar 

  22. A. B. Solov’eva, N. N. Glagolev, N. A. Aksenova, A. S. Kur’yanova, A. F. Vanin, V. A. Timofeeva, and P. S. Timashev, Russ. J. Phys. Chem. A 93, 1834 (2019).

    Article  Google Scholar 

  23. A. V. Belikov and A. V. Skripkin, Laser Biomedical Technologies, Part 1: The School-Book (SPbGU ITMO, St. Petersburg, 2008) [in Russian].

  24. T. M. Zhientaev, N. S. Melik-Nubarov, E. A. Litmanovitch, N. A. Aksenova, et al., Polymer Sci., Ser. A 51, 502 (2009).

    Article  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. 0082-2019-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kur’yanova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kur’yanova, A.S., Solov’eva, A.B., Glagolev, N.N. et al. Effect of the Wavelength and Intensity of Excitation Light on the Efficiency of Photogeneration of Singlet Oxygen by Photodithazine in the Presence of Pluronic F127 in Model Processes of Photo-Oxidation. Russ. J. Phys. Chem. 95, 1222–1229 (2021). https://doi.org/10.1134/S0036024421060170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421060170

Keywords:

Navigation