Skip to main content
Log in

Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean 〈cos ϕ〉 value of the О–Н···О bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cardona, R. Fartaria, M. B. Sweatman, and L. Lue, Mol. Simul. 42, 370 (2016).

    Article  CAS  Google Scholar 

  2. A. Kaiser, O. Ismailova, Koskela, et al., J. Mol. Liq. 189, 20 (2014).

    Article  CAS  Google Scholar 

  3. G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Russ. J. Phys. Chem. A 86, 1378 (2012).

    Article  CAS  Google Scholar 

  4. V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).

    Article  CAS  Google Scholar 

  5. G. G. Malenkov, J. Struct. Chem. 47, S1 (2006).

    Article  CAS  Google Scholar 

  6. H. Fröhlich, Theory of Dielectrics. Dielectric Constant and Dielectric Loss, 2nd ed. (Clarendon, Oxford, 1958).

    Google Scholar 

  7. M. I. Shakhparonov, Mechanisms of Fast Processes in Liquids (Vysshaya Shkola, Moscow, 1980) [in Russian].

    Google Scholar 

  8. S. Havriliak and S. Negami, Polymer 8 (8), 161 (1967).

    Article  CAS  Google Scholar 

  9. D. V. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  CAS  Google Scholar 

  10. J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990).

    Article  CAS  Google Scholar 

  11. J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 3187 (1996).

    Article  Google Scholar 

  12. H. Cole and U. Kaatze, J. Mol. Liq. 56, 95 (1993).

    Article  Google Scholar 

  13. D. Spoel, P. J. Maaren, and J. C. Berendsen, J. Chem. Phys. 108, 10220 (1998).

    Article  Google Scholar 

  14. U. Kaatze, J. Chem. Eng. Data A 34, 371 (1989).

    Article  CAS  Google Scholar 

  15. D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 88, 94 (2014).

    Article  CAS  Google Scholar 

  16. D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 87, 1145 (2013).

    Article  CAS  Google Scholar 

  17. A. M. Tolmachev, A. V. Kucherov, and G. O. Khondar’, Mosc. Univ. Chem. Bull. 67, 45 (2012).

    Article  Google Scholar 

  18. V. V. Levin and T. L. Podlovchenko, Zh. Strukt. Khim. 11, 766 (1970).

    CAS  Google Scholar 

  19. V. V. Levin and T. L. Podlovchenko, in Physics and Physical Chemistry of Liquids (Mosk. Gos. Univ., Moscow, 1973), No. 2, p. 27 [in Russian].

    Google Scholar 

  20. G. Vicq, A. M. Botterau, and J. M. Fournies-Marquina, J. Mol. Liq. 38, 233 (1988).

    Article  CAS  Google Scholar 

  21. C. A. Angell and D. L. Smith, J. Phys. Chem. 86, 3845 (1982).

    Article  CAS  Google Scholar 

  22. N. V. Lifanova, T. M. Usacheva, and V. I. Zhuravlev, Russ. J. Phys. Chem. A 81, 820 (2007).

    Article  CAS  Google Scholar 

  23. N. V. Lifanova, T. M. Usacheva, V. I. Zhuravlev, and V. K. Matveev, Russ. J. Phys. Chem. A 82, 1769 (2008).

    Article  CAS  Google Scholar 

  24. S. Schrödle, R. Buchner, and W. Kunz, J. Phys. Chem. B 108, 6281 (2004).

    Article  Google Scholar 

  25. T. Fukasawa, S. Takaaki, J. Watanabe, et al., Phys. Rev. Lett. 95, 197802 (2005).

    Article  Google Scholar 

  26. L. Saiz, E. Guàrdia, and J. A. Padró, J. Chem. Phys. 113, 2814 (2000).

    Article  CAS  Google Scholar 

  27. L. A. Dissado and R. M. Hill, Philos. Mag. B 41, 625 (1980).

    Article  CAS  Google Scholar 

  28. L. A. Dissado and R. M. Hill, Proc. R. Soc. London A 390, 131 (1983).

    Article  CAS  Google Scholar 

  29. L. A. Dissado and R. M. Hill, J. Chem. Soc., Faraday Trans. II 78, 81 (1982).

    Article  CAS  Google Scholar 

  30. R. M. Hill, Phys. Status Solidi B 103, 319 (1981).

    Article  CAS  Google Scholar 

  31. J. L. Tamarit, M. A. Perez-Jubindo, and M. R. Fuente, J. Phys.: Condens. Matter 9, 5469 (1997).

    CAS  Google Scholar 

  32. T. M. Usacheva, V. I. Zhuravlev, N. V. Lifanova, and V. K. Matveev, J. Struct. Chem. 52, 1153 (2011).

    Article  CAS  Google Scholar 

  33. T. M. Usacheva, V. I. Zhuravlev, N. V. Lifanova, and V. K. Matveev, Russ. J. Phys. Chem. A 91, 1056 (2017).

    Article  CAS  Google Scholar 

  34. G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Ros. Khim. Zh. 53 (6), 25 (2009).

    CAS  Google Scholar 

  35. N. Chandrasekhar and P. Krebs, J. Chem. Phys. 112, 5910 (2000).

    Article  CAS  Google Scholar 

  36. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A 108, 7151 (2004).

    Article  CAS  Google Scholar 

  37. L. Saiz, J. A. Padró, and E. Guàrdia, J. Phys. Chem. 114, 3187 (2001).

    Article  CAS  Google Scholar 

  38. J. A. Padró, L. Saiz, and E. Guàrdia, J. Mol. Struct. 416, 243 (1997).

    Article  Google Scholar 

  39. H. Abdelmoulahi, H. Ghalla, S. Nasr, et al., J. Mol. Liq. 220, 527 (2016).

    Article  CAS  Google Scholar 

  40. P. Buckley and P. A. Giguére, Can. J. Chem. 45, 397 (1967).

    Article  CAS  Google Scholar 

  41. D. Laage and L. T. Hynes, Science 311, 832 (2006).

    Article  CAS  Google Scholar 

  42. C. Leon and K. L. Ngai, J. Phys. Chem. B 103, 4045 (1999).

    Article  CAS  Google Scholar 

  43. V. A. Durov and V. A. Shilov, Russ. J. Phys. Chem. A 82, 1838 (2008).

    Article  CAS  Google Scholar 

  44. Y. Uosaki, S. Kitaura, and T. Moriyoshi, J. Chem. Eng. Data 49, 1410 (2004).

    Article  CAS  Google Scholar 

  45. V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 54, S233 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Usacheva.

Additional information

Original Russian Text © T.M. Usacheva, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 5, pp. 760–769.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usacheva, T.M. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol. Russ. J. Phys. Chem. 92, 933–942 (2018). https://doi.org/10.1134/S0036024418050333

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418050333

Keywords

Navigation