Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 933–942 | Cite as

Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

  • T. M. Usacheva
Structure of Matter and Quantum Chemistry
  • 21 Downloads

Abstract

Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean 〈cos ϕ〉 value of the О–Н···О bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

Keywords

dielectric spectroscopy molecular dynamics 1,2-ethanediol relaxation times correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Cardona, R. Fartaria, M. B. Sweatman, and L. Lue, Mol. Simul. 42, 370 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Kaiser, O. Ismailova, Koskela, et al., J. Mol. Liq. 189, 20 (2014).CrossRefGoogle Scholar
  3. 3.
    G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Russ. J. Phys. Chem. A 86, 1378 (2012).CrossRefGoogle Scholar
  4. 4.
    V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).CrossRefGoogle Scholar
  5. 5.
    G. G. Malenkov, J. Struct. Chem. 47, S1 (2006).CrossRefGoogle Scholar
  6. 6.
    H. Fröhlich, Theory of Dielectrics. Dielectric Constant and Dielectric Loss, 2nd ed. (Clarendon, Oxford, 1958).Google Scholar
  7. 7.
    M. I. Shakhparonov, Mechanisms of Fast Processes in Liquids (Vysshaya Shkola, Moscow, 1980) [in Russian].Google Scholar
  8. 8.
    S. Havriliak and S. Negami, Polymer 8 (8), 161 (1967).CrossRefGoogle Scholar
  9. 9.
    D. V. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).CrossRefGoogle Scholar
  10. 10.
    J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990).CrossRefGoogle Scholar
  11. 11.
    J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 3187 (1996).CrossRefGoogle Scholar
  12. 12.
    H. Cole and U. Kaatze, J. Mol. Liq. 56, 95 (1993).CrossRefGoogle Scholar
  13. 13.
    D. Spoel, P. J. Maaren, and J. C. Berendsen, J. Chem. Phys. 108, 10220 (1998).CrossRefGoogle Scholar
  14. 14.
    U. Kaatze, J. Chem. Eng. Data A 34, 371 (1989).CrossRefGoogle Scholar
  15. 15.
    D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 88, 94 (2014).CrossRefGoogle Scholar
  16. 16.
    D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 87, 1145 (2013).CrossRefGoogle Scholar
  17. 17.
    A. M. Tolmachev, A. V. Kucherov, and G. O. Khondar’, Mosc. Univ. Chem. Bull. 67, 45 (2012).CrossRefGoogle Scholar
  18. 18.
    V. V. Levin and T. L. Podlovchenko, Zh. Strukt. Khim. 11, 766 (1970).Google Scholar
  19. 19.
    V. V. Levin and T. L. Podlovchenko, in Physics and Physical Chemistry of Liquids (Mosk. Gos. Univ., Moscow, 1973), No. 2, p. 27 [in Russian].Google Scholar
  20. 20.
    G. Vicq, A. M. Botterau, and J. M. Fournies-Marquina, J. Mol. Liq. 38, 233 (1988).CrossRefGoogle Scholar
  21. 21.
    C. A. Angell and D. L. Smith, J. Phys. Chem. 86, 3845 (1982).CrossRefGoogle Scholar
  22. 22.
    N. V. Lifanova, T. M. Usacheva, and V. I. Zhuravlev, Russ. J. Phys. Chem. A 81, 820 (2007).CrossRefGoogle Scholar
  23. 23.
    N. V. Lifanova, T. M. Usacheva, V. I. Zhuravlev, and V. K. Matveev, Russ. J. Phys. Chem. A 82, 1769 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Schrödle, R. Buchner, and W. Kunz, J. Phys. Chem. B 108, 6281 (2004).CrossRefGoogle Scholar
  25. 25.
    T. Fukasawa, S. Takaaki, J. Watanabe, et al., Phys. Rev. Lett. 95, 197802 (2005).CrossRefGoogle Scholar
  26. 26.
    L. Saiz, E. Guàrdia, and J. A. Padró, J. Chem. Phys. 113, 2814 (2000).CrossRefGoogle Scholar
  27. 27.
    L. A. Dissado and R. M. Hill, Philos. Mag. B 41, 625 (1980).CrossRefGoogle Scholar
  28. 28.
    L. A. Dissado and R. M. Hill, Proc. R. Soc. London A 390, 131 (1983).CrossRefGoogle Scholar
  29. 29.
    L. A. Dissado and R. M. Hill, J. Chem. Soc., Faraday Trans. II 78, 81 (1982).CrossRefGoogle Scholar
  30. 30.
    R. M. Hill, Phys. Status Solidi B 103, 319 (1981).CrossRefGoogle Scholar
  31. 31.
    J. L. Tamarit, M. A. Perez-Jubindo, and M. R. Fuente, J. Phys.: Condens. Matter 9, 5469 (1997).Google Scholar
  32. 32.
    T. M. Usacheva, V. I. Zhuravlev, N. V. Lifanova, and V. K. Matveev, J. Struct. Chem. 52, 1153 (2011).CrossRefGoogle Scholar
  33. 33.
    T. M. Usacheva, V. I. Zhuravlev, N. V. Lifanova, and V. K. Matveev, Russ. J. Phys. Chem. A 91, 1056 (2017).CrossRefGoogle Scholar
  34. 34.
    G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Ros. Khim. Zh. 53 (6), 25 (2009).Google Scholar
  35. 35.
    N. Chandrasekhar and P. Krebs, J. Chem. Phys. 112, 5910 (2000).CrossRefGoogle Scholar
  36. 36.
    A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A 108, 7151 (2004).CrossRefGoogle Scholar
  37. 37.
    L. Saiz, J. A. Padró, and E. Guàrdia, J. Phys. Chem. 114, 3187 (2001).CrossRefGoogle Scholar
  38. 38.
    J. A. Padró, L. Saiz, and E. Guàrdia, J. Mol. Struct. 416, 243 (1997).CrossRefGoogle Scholar
  39. 39.
    H. Abdelmoulahi, H. Ghalla, S. Nasr, et al., J. Mol. Liq. 220, 527 (2016).CrossRefGoogle Scholar
  40. 40.
    P. Buckley and P. A. Giguére, Can. J. Chem. 45, 397 (1967).CrossRefGoogle Scholar
  41. 41.
    D. Laage and L. T. Hynes, Science 311, 832 (2006).CrossRefGoogle Scholar
  42. 42.
    C. Leon and K. L. Ngai, J. Phys. Chem. B 103, 4045 (1999).CrossRefGoogle Scholar
  43. 43.
    V. A. Durov and V. A. Shilov, Russ. J. Phys. Chem. A 82, 1838 (2008).CrossRefGoogle Scholar
  44. 44.
    Y. Uosaki, S. Kitaura, and T. Moriyoshi, J. Chem. Eng. Data 49, 1410 (2004).CrossRefGoogle Scholar
  45. 45.
    V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 54, S233 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations