Skip to main content
Log in

Thermochemical Properties of the 1-Ethyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid under Conditions of Equilibrium with Atmospheric Moisture

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around −40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at −91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of −19.3°C forms upon slow cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wassersheid and T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  2. J. P. Hallett and T. Welton, Chem. Rev. 111, 3508 (2011).

    Article  CAS  Google Scholar 

  3. J. F. Wishart, Energy Environ. Sci. 2, 956 (2009).

    Article  CAS  Google Scholar 

  4. H. L. Ngo, K. LeCompte, L. Hargens, et al., Thermochim. Acta 357–358, 97 (2000).

    Article  Google Scholar 

  5. K. R. Seddon, A. Stark, and M.-J. Torres, Pure Appl. Chem. 72, 2275 (2000).

    Article  CAS  Google Scholar 

  6. L. M. Ramenskaya, E. P. Grishina, A. M. Pimenova, and M. S. Gruzdev, Russ. J. Phys. Chem. A 82, 1098 (2008).

    Article  CAS  Google Scholar 

  7. M. S. Gruzdev, L. M. Ramenskaya, U. V. Chervonova, and R. S. Kumeev, Russ. J. Gen. Chem. 79, 1720 (2009).

    Article  CAS  Google Scholar 

  8. L. M. Ramenskaya, E. P. Grishina, and S. S. Guseinov, Zh. Fiz. Khim. 88, 1020 (2014).

    Google Scholar 

  9. P. Bonhôte, A.-P. Dias, N. Papageorgiou, et al., Inorg. Chem. 35, 1168 (1996).

    Article  Google Scholar 

  10. A. B. McEwen, H. L. Ngo, K. LeCompte, et al., Appl. J. Electrochem. Soc. 146, 1687 (1999).

    Article  CAS  Google Scholar 

  11. H. Matsumoto, M. Yanagida, K. Tanimoto, et al., Chem. Lett. 29, 922 (2000).

    Article  Google Scholar 

  12. D. R. MacFarlane, P. Meakin, N. Amini, and M. Forsyth, J. Phys.: Condens. Matter 13, 8257 (2001).

    CAS  Google Scholar 

  13. A. Noda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B 105, 4603 (2001).

    Article  CAS  Google Scholar 

  14. S. V. Dzyuba and R. A. Bartsch, Chem. Phys. Chem. 3, 161 (2002).

    Article  CAS  Google Scholar 

  15. C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, et al., J. Chem. Eng. Data 49, 954 (2004).

    Article  CAS  Google Scholar 

  16. H. Tokuda, K. Hayamizu, K. Ishii, et al., J. Phys. Chem. B 109, 6103 (2005).

    Article  CAS  Google Scholar 

  17. Md. A. B. H. Susan, T. Kaneko, N. Akihiro, and M. Watanabe, J. Am. Chem. Soc. 127, 4976 (2005).

    Article  CAS  Google Scholar 

  18. M. Ishikawa, T. Sugimoto, M. Kikuta, et al., J. Power Sourses 162, 658 (2006).

    Article  CAS  Google Scholar 

  19. Y. U. Paulechka, A. V. Blokhin, G. J. Kabo, and A. A. Strechan, J. Chem. Thermodyn. 39, 866 (2007).

    Article  CAS  Google Scholar 

  20. E. P. Grishina, L. M. Ramenskaya, M. S. Gruzdev, and O. V. Kraeva, J. Mol. Liq. 177, 267 (2013).

    Article  CAS  Google Scholar 

  21. S. V. Dzyuba and R. A. Bartsch, Tetrahedron Lett. 43, 4657 (2002).

    Article  CAS  Google Scholar 

  22. M. Galiński, A. Lewandowski, and I. Stepniak, Electrochim. Acta 51, 5567 (2006).

    Article  Google Scholar 

  23. W. A. Henderson and S. Passerini, Chem. Mater. 16, 2881 (2004).

    Article  CAS  Google Scholar 

  24. Z. H. Zhang, T. Cui, J. L. Zhang, et al., J. Therm. Anal. Calorim. 101, 1143 (2010).

    Article  CAS  Google Scholar 

  25. A. V. Blokhin, Y. U. Paulechka, A. A. Strechan, and G. J. Kabo, J. Phys. Chem. B 112, 4357 (2008).

    Article  CAS  Google Scholar 

  26. J. J. Moura Ramos, C. A. M. Afonso, and L. C. Branco, J. Therm. Anal. Calorim. 71, 659 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Ramenskaya.

Additional information

Original Russian Text © L.M. Ramenskaya, E.P. Grishina, N.O. Kudryakova, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 1, pp. 30–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramenskaya, L.M., Grishina, E.P. & Kudryakova, N.O. Thermochemical Properties of the 1-Ethyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid under Conditions of Equilibrium with Atmospheric Moisture. Russ. J. Phys. Chem. 92, 24–28 (2018). https://doi.org/10.1134/S003602441801020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441801020X

Keywords

Navigation