Skip to main content
Log in

Hydrogen bonds in complexes of phosphonic and metylphosphonic acids with dimethylformamide

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The structures of the hydrogen-bonded complexes of phosphonic and metylphosphonic acids with dimethylformamide (DMF) were calculated by the DFT/B3LYP, DFT/M06, and MP2 methods in the 6-31++G(d, p), 6-311++G(d, p), and cc-PVTZ basis sets. The geometrical parameters of hydrogen bonds, intermolecular interaction energies, and frequency shifts of hydroxyl group vibrations of the acid during hydrogen bonding were calculated. An NBO analysis was performed; the stabilization energy E stab and the charge q ct transferred from the orbitals of the lone electron pairs of the oxygen atom of the DMF molecules to the antibonding orbital of the hydroxyl groups of phosphonic and metylphosphonic acids were determined. The obtained values were compared with the corresponding literature data for phosphoric acid complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Fedorova, S. P. Krishtal’, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. 80 (Suppl. 1), S37 (2006).

    Article  Google Scholar 

  2. R. P. Bell, The Proton in Chemistry (Chapman and Hall, London, 1973).

    Book  Google Scholar 

  3. V. D. Maiorov, S. G. Sysoeva, O. N. Temkin, and I. S. Kislina, Russ. Chem. Bull. 42, 1511 (1993).

    Article  Google Scholar 

  4. V. V. Burdin, I. S. Kislina, V. D. Maiorov, and N. B. Librovich, Russ. Chem. Bull. 47, 46 (1998).

    Article  CAS  Google Scholar 

  5. I. S. Kislina, S. G. Sysoeva, N. B. Librovich, O. N. Temkin, I. L. Eremenko, and S. E. Nefedov, Dokl. Chem. 360, 106 (1998).

    Google Scholar 

  6. G. V. Yukhnevich, E. G. Tarakanova, V. D. Maiorov, and N. B. Librovich, Russ. Chem. Rev. 64, 901 (1995).

    Article  Google Scholar 

  7. I. S. Kislina, S. T. Sysoeva, and O. N. Temkin, Russ. Chem. Bull. 43, 960 (1994).

    Article  Google Scholar 

  8. E. G. Tarakanova, O. Yu. Tsoi, G. V. Yukhnevich, I. S. Kislina, and N. B. Librovich, Kinet. Catal. 45, 359 (2004).

    Article  CAS  Google Scholar 

  9. G. V. Yukhnevich, E. G. Tarakanova, O. Yu. Tsoi, N. B. Librovich, and I. S. Kislina, Zh. Strukt. Khim. 46, 18 (2005).

    Google Scholar 

  10. Yu. A. Fadeeva, L. E. Shmukler, and L. P. Safonova, Russ. J. Gen. Chem. 74, 174 (2004).

    Article  CAS  Google Scholar 

  11. V. A. Shmakov and N. V. Ivanov, Zh. Obshch. Khim. 61, 1545 (1991).

    CAS  Google Scholar 

  12. L. P. Safonova, Yu. A. Fadeeva, and A. A. Pryakhin, Russ. J. Phys. Chem. A 83, 1747 (2009).

    Article  CAS  Google Scholar 

  13. J. A. Fadeeva, L. E. Shmukler, L. P. Safonova, and A. N. Kinchin, J. Mol. Liq. 121, 53 (2005).

    Article  Google Scholar 

  14. Yu. A. Fadeeva, L. I. Demina, Yu. G. Gorbunova, L. E. Shmukler, L. P. Safonova, and A. Yu. Tsivadze, Russ. J. Coord. Chem. 29, 515 (2003).

    Article  CAS  Google Scholar 

  15. I. V. Fedorova, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. A 83, 2103 (2009).

    Article  CAS  Google Scholar 

  16. M. A. Krest’yaninov, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. A 86, 1847 (2012).

    Article  Google Scholar 

  17. I. V. Fedorova, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. A 85, 1917 (2011).

    Article  CAS  Google Scholar 

  18. I. V. Fedorova, M. G. Kiselev, and L. P. Safonova, J. Clim. 134, 174506 (2011).

    Google Scholar 

  19. L. Zhang, H. Li, Y. Wang, and X. Hu, J. Phys. Chem. B 111, 11016 (2007).

    Article  CAS  Google Scholar 

  20. E. Arunan, G. R. Desiraju, R. A. Klein, et al., IUPAC Pure Appl. Chem. 83, 1637 (2011).

    CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Rev. E.01 (Gaussian, Inc., Wallingford CT, 2004).

    Google Scholar 

  22. H. F. Schaefer, Applications of Electronic Structure Theory (Plenum, New York, 1977), p. 461.

    Book  Google Scholar 

  23. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, UK, 1990).

    Google Scholar 

  24. E. Espinosa, E. Molins, and C. Lecomte, J. Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

  25. F. Weinhold, J. Mol. Struct. (THEOCHEM) 398–399, 181 (1997).

    Article  Google Scholar 

  26. E. D. Glendening, A. E. Reed, and F. Weinhold, NBO 3.0 Program Manual (Univ. of Wisconsin, Madison, 1998).

    Google Scholar 

  27. I. V. Alabugin, M. Manoharan, S. Peabody, and F. Weinhold, J. Am. Chem. Soc. 125, 5973 (2003).

    Article  CAS  Google Scholar 

  28. P. Hobza and Z. Havlas, Chem. Rev. 100, 4253 (2000).

    Article  CAS  Google Scholar 

  29. P. Hobza and Z. Havlas, Theor. Chem. Acc. 108, 325 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Khatuntseva.

Additional information

Original Russian Text © E.A. Khatuntseva, M.A. Krest’yaninov, I.V. Fedorova, M.G. Kiselev, L.P. Safonova, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 12, pp. 1904–1910.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatuntseva, E.A., Krest’yaninov, M.A., Fedorova, I.V. et al. Hydrogen bonds in complexes of phosphonic and metylphosphonic acids with dimethylformamide. Russ. J. Phys. Chem. 89, 2248–2253 (2015). https://doi.org/10.1134/S003602441512016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441512016X

Keywords

Navigation