Skip to main content
Log in

Effect of electron withdrawing groups on near infrared absorption of quinaldine-based squaraine dyes

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The quinaldinium salt possessing electron withdrawing (-COOEt) groups was condensed with squaric acid giving the quinaldine based symmetrical squaraine dye. Effect of electron withdrawing group on near infrared absorption of the squaraine dye has been studied. Results showed that electron withdrawing group shifts bathochromically the absorption wavelength of squaraine dye by 31 nm when compared with the unsubstituted dye. Computational studies were performed in order to understand the charge transfer and red shift and later have been attributed to the increased biradicaloid character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Y. Law, Chem. Rev. 93, 449 (1993).

    Article  CAS  Google Scholar 

  2. J. Fabian, Chem. Rev. 92, 1197 (1992).

    Article  CAS  Google Scholar 

  3. J. Fabian and R. Zahradnik, Angew. Chem. Int. Ed. 28, 677 (1989).

    Article  Google Scholar 

  4. P. V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  CAS  Google Scholar 

  5. K. Takechi, P. V. Kamat, R. R. Avirah, K. Jyothish, and D. Ramaiah, Chem. Mater. 20, 265 (2008).

    Article  CAS  Google Scholar 

  6. B. O’Regan, and M. Grätzel, Nature 737, 353 (1991).

    Google Scholar 

  7. T. Geiger, Adv. Funct. Mater. 19, 2720 (2009).

    Article  CAS  Google Scholar 

  8. Y. Shi, Angew. Chem. Int. Ed. 50, 6619 (2011).

    Article  CAS  Google Scholar 

  9. L. Beverina, D. Ruffo, C. M. Mari, G. A. Pagani, M. Sassi, F. D. Angelis, S. Fantacci, J. H. Yum, M. Gratzel, and M. K. Nazeeruddin, Chem. Sus. Chem. 2, 621 (2009).

    Article  CAS  Google Scholar 

  10. U. Mayerhöffer, K. Deing, K. Grub, H. Braunschweig, K. Meerholz, and F. Würthner, Angew. Chem. Int. Ed. 48, 8776 (2009).

    Article  Google Scholar 

  11. IR Absorbing Dyes, Ed. by M. Matsuoka (Plenum, New York, 1990).

    Google Scholar 

  12. Near-Infrared Dyes for High Technology Applications, Ed. by E. Terpetschnig, O. S. Wolfbeis, S. Daehne, U. Resch-Genger, and O. S. Wolfbeis, NATO ASI, Ser. 3: High Technology, Vol. 53 (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  13. G. Patonay, J. Salon, J. Sowell, and L. Strekowski, Molecules 9, 40 (2004).

    Article  CAS  Google Scholar 

  14. K. Licha and C. Olbrich, Adv. Drug Deliv. Rev. 57, 1087 (2005).

    Article  CAS  Google Scholar 

  15. D. G. Devi, T. R. Cibin, D. Ramaiah, and A. Abraham, J. Photochem. Photobiol. B 92, 153 (2008).

    Article  CAS  Google Scholar 

  16. M. Umar and W. Relph, Mol. Cancer Ther. 2, 489 (2003).

    Google Scholar 

  17. E. D. Sternberg, D. Dolphin, and C. Bruckner, Tetrahedron 54, 4151 (1998).

    Article  CAS  Google Scholar 

  18. G. Seitz and P. Immin, Chem. Rev. 92, 1227 (1992).

    Article  CAS  Google Scholar 

  19. A. Ghosh, Chem. Soc. Rev. 32, 181 (2003)

    Article  Google Scholar 

  20. A. Ghosh, Acc. Chem. Res. 38, 449 (2005).

    Article  Google Scholar 

  21. M. Sameiro and T. Gonçalves, Chem. Rev. 109, 190 (2009).

    Article  Google Scholar 

  22. L. Beverina and P. Salice, Eur. J. Org. Chem. 17, 1225 (2010); M. Tian, S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, and L. S. Pu, J. Am. Chem. Soc. 125, 348 (2003).

    Google Scholar 

  23. S. Tatsuura, M. Tian, M. Furuki, Y. Sato, I. Iwasa, and H. Mitsu, Appl. Phys. Lett. 84, 1450 (2004).

    Article  CAS  Google Scholar 

  24. H. Langhals, Angew. Chem. Int. Ed. 42, 4286 (2003).

    Article  CAS  Google Scholar 

  25. H. Meier, R. Petermann, and J. Gerold, Chem. Commun., 977 (1999).

    Google Scholar 

  26. K. Yesudas and K. Bhanuprakash, J. Phys. Chem. A 111, 1943 (2007).

    Article  CAS  Google Scholar 

  27. Ch. Prabhakar, G. Krishna Chaitanya, S. Sitha, K. Bhanuprakash, and V. Jayathirtha Rao, J. Phys. Chem. A 109, 2614 (2005).

    Article  CAS  Google Scholar 

  28. Ch. Prabhakar, K. Yesudas, G. Krishna Chaitanya, S. Sitha, K. Bhanuprakash, and V. Jayathirtha Rao, J. Phys. Chem. A 109, 8604 (2005).

    Article  CAS  Google Scholar 

  29. K. Yesudas, G. Krishna Chaitanya, Ch. Prabhakar, K. Bhanuprakash, and V. Jayathritha Rao, J. Phys. Chem. A 110, 11717 (2006).

    Article  CAS  Google Scholar 

  30. Ch. Prabhakar, K. Yesudas, K. Bhanuprakash, V. Jayathirtha Rao, R. S. Santosh Kumar, and D. Narayana Rao, J. Phys. Chem. C 112, 13272 (2008).

    Article  CAS  Google Scholar 

  31. K. Srinivas, Ch. Prabhakar, C. Lavanya Devi, K. Yesudas, K. Bhanuprakash, and V. Jayathritha Rao, J. Phys. Chem. A 111, 3378 (2007).

    Article  CAS  Google Scholar 

  32. A. Thomas, K. Srinivas, Ch. Prabhakar, K. Bhanuprakash, and V. Jayathirtha Rao, Chem. Phys. Lett. 454, 36 (2008).

    Article  CAS  Google Scholar 

  33. A. L. Puyad, G. K. Chaitanya, A. Thomas, M. Paramasivam, and K. Bhanuprakash, J. Phys. Org. Chem. 26, 37 (2013).

    Article  CAS  Google Scholar 

  34. A. L. Puyad, Ch. Prabhakar, K. Yesudas, K. Bhanuprakash, and V. J. Rao, J. Mol. Struct.: THEOCHEM 904, 1 (2009).

    Article  CAS  Google Scholar 

  35. A. L. Puyad, G. K. Chaitanya, Ch. Prabhakar, and K. Bhanuprakash, J. Mol. Model. 19, 275 (2013).

    Article  CAS  Google Scholar 

  36. N. Kaila, K. Janz, S. DeBernardo, P. W. Bedard, R. T. Camphausen, S. Tam, D. H. H. Tsao, J. C. Keith, Jr., C. Nicerson-Nutter, A. Shilling, R. Young-Sciame, and Q. Wang, J. Med. Chem. 50, 21 (2007).

    Article  CAS  Google Scholar 

  37. N. Kaila, K. Janz, A. Huang, A. Moretto, S. DeBernardo, P. W. Bedard, S. Tam, C. Valerie, J. C. Keith, Jr., D. H. H. Tsao, N. Sushkova, G. D. Shaw, R. T. Camphausen, R. G. Schaub, and Q. Wang, J. Med. Chem. 50, 40 (2007).

    Article  CAS  Google Scholar 

  38. M. N. Zemtsova, P. L. Trakhtenberg, and M. V. Galkina, Russ. J. Org. Chem. 39, 1803 (2003).

    Article  CAS  Google Scholar 

  39. K. Jyothish, K. T. Arun, and D. Ramaiah, Org. Lett. 6, 3365 (2004).

    Article  Google Scholar 

  40. M. J. Frisch et al., Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  41. R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).

    Article  CAS  Google Scholar 

  42. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).

    Article  CAS  Google Scholar 

  43. J. Wirz, Pure Appl. Chem. 56, 1289 (1984).

    Article  CAS  Google Scholar 

  44. M. Nakano, T. Nitta, K. Yamaguchi, B. Champagne, and E. Botek, J. Phys. Chem. A 108, 4105 (2004).

    Article  CAS  Google Scholar 

  45. H. Nakatsuji, Acta Chim. Hung., Models Chem. 129, 719 (1992).

    CAS  Google Scholar 

  46. H. Nakatsuji, in Computational Chemistry, Reviews of Current Trends, Vol. 2, Ed. by J. Leszczynski (World Scientific, Singapore, 1997).

  47. Avogadro, Version 1.1.0. http://avogadro.openmolecules.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash L. Puyad.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puyad, A.L., Krishna Chaitanya, G., Karve, S.S. et al. Effect of electron withdrawing groups on near infrared absorption of quinaldine-based squaraine dyes. Russ. J. Phys. Chem. 89, 1087–1090 (2015). https://doi.org/10.1134/S0036024415060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415060047

Keywords

Navigation