Skip to main content
Log in

A comparative study of semi-squaraine and squaraine dyes using computational techniques: tuning the charge transfer/biradicaloid character by substitution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Semi-squaraines (SMSQ) are known as donor-acceptor (D-A) type molecules whereas squaraines (SQ), which differs from SMSQ by an extra donor group, are more or less biradicaloids in nature. The effect of the additional donor group in SQ, which changes the nature of the molecule, on geometrical and electronic structure are studied here and compared with the corresponding SMSQ. It is noticed from the geometrical parameters that, a strong resonance exists in SQ whereas disparity in carbon-carbon bond lengths of central C4 ring is seen in SMSQ dyes. The increasing and decreasing of antibonding interactions between central C4 ring and side donor groups cause destabilization of HOMO and stabilization of LUMO respectively in case of SQ compared to SMSQ molecules. This leads to decreasing the HOMO-LUMO gap and promotes biradicaloid character of SQ. The absorption maxima obtained by using TD-DFT method with BLYP, B3LYP, BHandHLYP, CAM-B3LYP and M06-2X functionals are not in good agreement with experimental results. On the other hand SAC-CI method gives better results for all the molecules. From this work we can evolve a design principle of these molecules which play a role as sensitizers in dye sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Treibs A, Jacob K (1965) Angew Chem Int Ed 4:694

    Article  Google Scholar 

  2. Devi DG, Cibin TR, Ramaiah D, Abraham A (2008) J Photo Chem Photo Biol B 92:153–159

    Article  CAS  Google Scholar 

  3. Law KY (1987) J Phys Chem 91:5184–5193

    Article  CAS  Google Scholar 

  4. Law KY, Bailey F (1992) J Org Chem 57:3278–3286

    Article  CAS  Google Scholar 

  5. Chen CT, Marder SR, Cheng LT (1994) J Am Chem Soc 116:3117–3118

    Article  CAS  Google Scholar 

  6. He G, Tan L, Zheng Q, Prasad P (2008) Chem Rev 108:1245–1330

    Article  CAS  Google Scholar 

  7. Marder SR (2009) J Mater Chem 19:7392–7393

    Article  CAS  Google Scholar 

  8. Scherer D, Dörfler R, Feldner A, Vogtmann T, Schwoerer M, Lawrentz U, Grahn W, Lambert C (2002) Chem Phys 279:179–207

    Article  CAS  Google Scholar 

  9. Chung SJ, Rumi M, Alain V, Barlow S, Perry JW, Marder SR (2005) J Am Chem Soc 127:10844–10845

    Article  CAS  Google Scholar 

  10. Strehmel B, Sarker A, Detert H (2003) Chem Phys Chem 4:249–259

    Article  CAS  Google Scholar 

  11. Pond S, Rumi M, Levin M, Parker T, Beljonne D, Day M, Bredas JL, Marder S, Perry J (2002) J Phys Chem A 106:11470–11480

    Article  CAS  Google Scholar 

  12. Albota M, Beljonne D, Brédas JL, Ehr-lich J, Fu J, Heikal A, Hess S, Kogej T, Levin M, Marder S, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Science 281:1653–1656

    Article  CAS  Google Scholar 

  13. Büschel M, Ajayaghosh A, Arunkumar E, Daub J (2003) Org Lett 5:2975–2978

    Article  CAS  Google Scholar 

  14. Alex S, Santhosh U, Das S (2005) J Photochem Photobiol A 172:63–71

    Article  CAS  Google Scholar 

  15. Burke A, Schmidt-Mende L, Ito S, Grätzel M (2007) Chem Commun 3:234–236

    Article  CAS  Google Scholar 

  16. Snaith H, Humphry-Baker R, Chen P, Cesar I, Zakeeruddin S, Grätzel M (2008) Nanotechnology 19:424003

    Article  CAS  Google Scholar 

  17. Mishra A, Fischer M, Bäuerle P (2009) Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  18. Merritt VY, Hovel HJ (1976) Appl Phys Lett 29:414–415

    Article  CAS  Google Scholar 

  19. Liang K, Law KY, Whitten D (1995) J Phys Chem 99:16704–16708

    Article  CAS  Google Scholar 

  20. He C, He Q, Yi Y, Wu G, Bai F, Shuai Z, Li Y (2008) J Mater Chem 18:4085–4090

    Article  CAS  Google Scholar 

  21. White M, Olson D, Shaheen S, Kopidakis N, Ginley D (2006) Appl Phys Lett 89:143517–143517-3

    Article  CAS  Google Scholar 

  22. Lloyd MT, Mayer AC, Subramanian S, Mourey DA, Herman DJ, Bapat AV, Anthony JE, Mal-liaras GG (2007) J Am Chem Soc 129:9144–9149

    Article  CAS  Google Scholar 

  23. Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ (2008) J Am Chem Soc 130:17640–17641

    Article  CAS  Google Scholar 

  24. Halton B (2008) Chem New Zealand 72:57–62

    CAS  Google Scholar 

  25. Das S, Thomas K, George M, Kamat P (1992) J Chem Soc Faraday Trans 88:3419–3422

    Article  CAS  Google Scholar 

  26. Chen H, Farahat M, Law KY, Whitten D (1996) J Am Chem Soc 118:2584–2594

    Article  CAS  Google Scholar 

  27. Oswald B, Patsenker L, Duschl J, Szmacinski H, Wolfbeis O, Terpetschnig E (1999) Bioconjugate Chem 10:925–931

    Article  CAS  Google Scholar 

  28. Ioffe V, Gorbenko G, Kinnunen P, Tatarets A, Kolosova O, Patsenker L, Terpetschnig E (2007) J Fluoresc 17:65–72

    Article  CAS  Google Scholar 

  29. Welder F, Paul B, Nakazumi H, Yagi S, Colyer CL (2003) J Chromatogr B 793:93–105

    Article  CAS  Google Scholar 

  30. Ioffe V, Gorbenko G, Domanov Y, Tatarets A, Patsenker L, Terpetsching E, Dyubko T (2006) J Fluoresc 16:47–52

    Article  CAS  Google Scholar 

  31. Tatarets AL, Fedyunyayeva IA, Dyubko TS, Povrozin YA, Doroshenko AO, Terpetschnig EA, Patsenker LD (2006) Anal Chim Acta 570:214–223

    Article  CAS  Google Scholar 

  32. Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD, Kryvorotenko DV, Yarmoluk SM (2007) Dyes and Pigm 72:285–292

    Article  CAS  Google Scholar 

  33. Sreejith S, Divya K, Ajayaghosh A (2008) Angew Chem Int Ed 47:7883–7887

    Article  CAS  Google Scholar 

  34. Santos PF, Reis LV, Almeida P, Oliveira AS, Vieira Ferreira LF (2003) J Photochem Photobiol A 160:159–161

    Article  CAS  Google Scholar 

  35. Santos PF, Reis LV, Duarte I, Serrano JP, Almeida P, Oliveira AS, Vieira Ferreira LF (2005) Helv Chim Acta 88:1135–1143

    Article  CAS  Google Scholar 

  36. Jyothish K, Avirah RR, Ramaiah D (2006) Org Lett 7:111–114

    Article  CAS  Google Scholar 

  37. Jisha VS, Arun KT, Hariharan M, Ramaiah D (2006) J Am Chem Soc 128:6024–6025

    Article  CAS  Google Scholar 

  38. Sprenger HE, Ziegenbein W (1968) Angew Chem Int Ed Engl 7:530–535

    Article  CAS  Google Scholar 

  39. Beverina L, Ruffo R, Patriacra G, Angelis FD, Roberto D, Righetto S, Ugo R, Pagani GA (2009) J Mater Chem 19:8190–8197

    Article  CAS  Google Scholar 

  40. Keil D, Hartmann H (2001) Dyes Pigm 49:161–179

    Article  CAS  Google Scholar 

  41. Tatarets AL, Fedyunyaeva IA, Terpetschnig E, Patsenker LD (2005) Dyes Pigm 64:125–134

    Article  CAS  Google Scholar 

  42. Law KY (1993) Chem Rev 93:449–486

    Article  CAS  Google Scholar 

  43. Fabian J, Nakazumi H, Matsuoka M (1992) Chem Rev 92:1197–1226

    Article  CAS  Google Scholar 

  44. Fabian J, Zahradnik R (1989) Angew Chem Int Ed 28:677–694

    Article  Google Scholar 

  45. Matsui M, Nagasaka KI, Tokunaga SY, Funabiki K, Yoshida T, Minoura H (2003) Dyes Pigm 58:219–226

    Article  CAS  Google Scholar 

  46. Miyazaki A, Enoki T (2009) New J Chem 33:1249–1254

    Article  CAS  Google Scholar 

  47. Block MAB, Khan A, Hecht S (2005) J Org Chem 69:184–187

    Article  CAS  Google Scholar 

  48. Bae JS, Son YA, Kim SH (2009) Fibers Polym 10:403–405

    Article  CAS  Google Scholar 

  49. Bae JS, Gwon SY, Son YA, Kim SH (2009) Dyes Pigm 83:324–327

    Article  CAS  Google Scholar 

  50. Fuji Film Photoelectric converters and photoelectrochemical cells JP (2000) 251958

  51. Smutney EJ, Caserio MC, Roberts JD (1960) J Am Chem Soc 82:1793–1801

    Article  Google Scholar 

  52. Patton E, West R (1973) J Am Chem Soc 95:8703–8707

    Article  CAS  Google Scholar 

  53. Xie J, Comeau AB, Seto CT (2004) Org Lett 6:83–86

    Article  CAS  Google Scholar 

  54. Meier H, Petermann R (2004) Helv Chim Acta 87:1109–1118

    Article  CAS  Google Scholar 

  55. Meier H, Dullweber U (1997) J Org Chem 62:4821–4826

    Article  CAS  Google Scholar 

  56. Meier H, Dullweber U (1996) Tetrahedron Lett 37:1191–1194

    Article  CAS  Google Scholar 

  57. Tatsuura S, Mastubara T, Tian M, Mitsu H, Iwasa I, Sato Y, Furuki M (2004) Appl Phys Lett 85:540–542

    Article  CAS  Google Scholar 

  58. Detty MR, Henne B (1993) Heterocycles 35:1149–1156

    Article  CAS  Google Scholar 

  59. Law KY, Bailey FC (1993) Dyes Pigm 21:1–12

    Article  CAS  Google Scholar 

  60. Bello KA, Ajayi JO (1996) Dyes Pigm 31:79–87

    Article  CAS  Google Scholar 

  61. Park SY, Jun K, Oh SW (2005) Bull Korean Chem Soc 26:428–432

    Article  CAS  Google Scholar 

  62. Law KY, Bailey FC (1988) Dyes Pigm 9:85–107

    Article  CAS  Google Scholar 

  63. Matsui M, Tanaka S, Funabiki K, Kitaguchi T (2006) Bull Chem Soc Jpn 79:170–176

    Article  CAS  Google Scholar 

  64. Jyothish K, Arun KT, Ramaiah D (2004) Org Lett 6:3965–3968

    Article  CAS  Google Scholar 

  65. Keil D, Hartmann H, Moschny T (1991) Dyes Pigm 17:19–27

    Article  CAS  Google Scholar 

  66. Kuramoto N, Natsukawa K, Asao K (1989) Dyes Pigm 11:21–35

    Article  Google Scholar 

  67. Kukrer B, Akkaya EU (1999) Tetrahedron Lett 40:9125–9128

    Article  CAS  Google Scholar 

  68. Beverina L, Abbotto A, Landenna M, Cerminara M, Tubino R, Meinardi F, Bradamante S, Pagani GA (2005) Org Lett 7:4257–4260

    Article  CAS  Google Scholar 

  69. Chenthamarakshan CR, Ajayaghosh A (1998) Chem Mater 10:1657–1663

    Article  CAS  Google Scholar 

  70. Kim SH, Hwang SH (1997) Dyes Pigm 35:111–121

    Article  CAS  Google Scholar 

  71. Santos P, Reis LV, Duarte I, Serrano JP, Almeida P, Oliveira AS, Ferreira LFV (2005) Helv Chim Acta 88:1135–1143

    Article  CAS  Google Scholar 

  72. Ramaiah D, Arun KT (2005) J Phys Chem A 109:5571–5578

    Article  CAS  Google Scholar 

  73. Bernstein J, Tristani-Kendra M, Eckhardt CJ (1986) J Phys Chem 90:1069–1073

    Article  CAS  Google Scholar 

  74. Meier H, Petermann R, Gerold J (1999) Chem Commun 11:977–978

    Article  Google Scholar 

  75. Jeremiah JG, Easwaran A, Lorna B, Jeffrey MB, Kristy MD, James RJ, Bruce CN, Bradley DS (2007) J Am Chem Soc 129(48):15054–15059

    Article  CAS  Google Scholar 

  76. Denis J, Eric AP, Adèle DL, Xavier A, Carlo A (2009) Phys Chem Chem Phys 11:1258–1262

    Google Scholar 

  77. Prabhakar C, Krishna Chaitanya G, Sitha S, Bhanuprakash K, Jayathritha Rao V (2005) J Phys Chem A 109:2614–2622

    Article  CAS  Google Scholar 

  78. Prabhakar C, Yesudas K, Krishna Chaitanya G, Sitha S, Bhanuprakash K, Jayathritha Rao V (2005) J Phys Chem A 109:8604–8616

    Article  CAS  Google Scholar 

  79. Frisch MJ et al. (2009) Gaussian 09 Gaussian Inc. Wallingford

  80. Avirah RR, Jyothish K, Suresh CH, Suresh E, Ramaiah D (2011) Chem Commun 47:12822–12824

    Article  CAS  Google Scholar 

  81. Pandey SS, Inoue T, Fujikawa N, Yamaguchi Y, Hayase S (2010) Thin Solid Films 519:1066–1071

    Article  CAS  Google Scholar 

  82. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  83. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  84. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  85. VMOdes Program, Revision A 71, Nemykin VN, Basu P, 2001, 2003, Department of Chemistry, Duquesne University, Pittsburgh, PA

  86. Nakano M, Nitta T, Yamaguchi K, Champagne B, Botek E (2004) J Phys Chem A 108:4105–4111

    Article  CAS  Google Scholar 

  87. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  88. Nakatsuji H (1992) Acta Chim Hung - Models Chem 129:719–776

    CAS  Google Scholar 

  89. Nakatsuji H (1992) In: Leszczynski J (ed) Comput Chem Rev Curr Trends, vol 2. World Scientific, River Edge

    Google Scholar 

  90. Mayerhöffer U, Deing K, Grub K, Braunschweig H, Meerholz K, Würthner F (2009) Angew Chem Int Ed 48:8776–8779

    Article  CAS  Google Scholar 

  91. Denis J, Antoine F, Henry C, Ilaria C, Carlo A, Jean-Marie A, Eric AP (2006) J Phys Chem A 110:5952–5959

    Article  CAS  Google Scholar 

  92. Pansy DP, Artëm EM (2090) J Phys Chem A 113:8409–8414

    Google Scholar 

  93. Denis J, Carlo A (2011) J Chem Theor Comput 7:369–376

    Article  CAS  Google Scholar 

  94. Eric AP, Francüois M, Denis J (2007) J Phys Chem A 111:5528–5535

    Article  CAS  Google Scholar 

  95. Xiao-Ting L, Jing-Fu G, Ai-Min R, Shuang H, Ji-Kang F (2012) J Org Chem 77:585–597

    Article  CAS  Google Scholar 

  96. Yuan L, Weiying L, Yueting Y, Hua C (2012) J Am ChemSoc 134:1200–1211

    Article  CAS  Google Scholar 

  97. Puyad AL, Prabhakar C, Yesudas K, Bhanuprakash K, Rao VJ (2009) J Mol Struct (THEOCHEM) 904:1–6

    Article  CAS  Google Scholar 

  98. Yesudas K, Chaitanya GK, Prabhakar C, Bhanuprakash K, Rao VJ (2006) J Phys Chem A 110:11717–11729

    Article  CAS  Google Scholar 

  99. Yesudas K, Bhanuprakash K (2007) J Phys Chem A 111:1943–1952

    Article  CAS  Google Scholar 

  100. Srinivas K, Prabhakar C, Devi CL, Yesudas K, Bhanuprakash K, Rao VJ (2007) J Phys Chem A 111:3378–3386

    Article  CAS  Google Scholar 

  101. Thomas A, Srinivas K, Prabhakar C, Bhanuprakash K, Rao VJ (2008) Chem Phys Lett 454:36–41

    Article  CAS  Google Scholar 

  102. Prabhakar C, Yesudas K, Bhanuprakash K, Rao VJ, Kumar RSS, Rao DN (2008) J Phys Chem C 112:13272–13280

    Article  CAS  Google Scholar 

  103. Prabhakar C, Bhanuprakash K, Rao VJ, Balamuralikrishna M, Rao DN (2010) J Phys Chem C 114:6077–6082

    Article  CAS  Google Scholar 

  104. Wirz J (1984) Pure Appl Chem 56:1289–1300

    Article  CAS  Google Scholar 

  105. Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179–4193

    Article  CAS  Google Scholar 

  106. Adamo C, Barone V, Bencini A, Totti F, Ciofini I (1999) Inorg Chem 38:1996–2004

    Article  CAS  Google Scholar 

  107. Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047–9052

    Article  CAS  Google Scholar 

  108. Bauernschmitt R, Ahlrichs R (1996) Chem Phy Lett 256:454–464

    Article  CAS  Google Scholar 

  109. Jun-Ho Y, Pablo W, Simon H, Daniel R, Thomas G, Frank N, De Filippo A, Michael G, Mohammad KN (2007) J Am Chem Soc 129(34):10320–10321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ALP and GKC thank University Grants Commission for financial support through minor research project (39-1023/2010 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunturu Krishna Chaitanya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puyad, A.L., Chaitanya, G.K., Prabhakar, C. et al. A comparative study of semi-squaraine and squaraine dyes using computational techniques: tuning the charge transfer/biradicaloid character by substitution. J Mol Model 19, 275–287 (2013). https://doi.org/10.1007/s00894-012-1543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1543-8

Keywords

Navigation