Skip to main content

Squaraine Dyes

  • Chapter
  • First Online:
Progress in the Science of Functional Dyes

Abstract

Squaraine dyes which are composed of a cyclobutenedione core with aromatic or heterocyclic components show sharp and intense electronic absorption in the areasĀ of visible to near-infrared regions and often fluorescence emission. These prominent optical properties arouse our interest in various fields of applications using the dye. In order to respond to the diverse demands of squaraine dyes in application fields, considerable effort have been made in the past decades to design and synthesize symmetrical and unsymmetrical squaraine dyes by means of classical condensation reaction of squaric acid moiety with electron-rich compounds. A novel approach using transition-metal catalyzed cross-coupling is developed to construct squaraine chromophores. This approach allows not only to attach desired functionalities on peripheral parts of chromophores but also to synthesize oligomeric and polymeric squaraine dyes. In addition to the molecular level of study, the supramolecular architectures have been constructed by non-covalent interaction between the dye molecules. This section gives an overview of the recent advances in syntheses and structures of squaraine dye with particular attention to the novel synthetic protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Aguilar A, Pena-Cabrera E (2007) Selective cross-couplings. sequential stilleāˆ’liebeskind/srogl reactions of 3-chloro-4-arylthiocyclobutene-1,2-dione. Org Lett 9, 4163

    Google ScholarĀ 

  • Ahn HY, Yao S, Wang X, Belfield KD (2012) Near-infrared-emitting squaraine dyes with high 2PA cross-sections for multiphoton fluorescence imaging. ACS Appl Mater Interfaces 4:2847

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ajayaghosh A (2005) Chemistry of squaraine-derived materials: near-IR dyes, low band gap systems, and cation sensors. Acc Chem Res 38:449

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ajayaghosh A, Eldo J (2001) A novel approach toward low optical band gap polysquaraines. Org Lett 3:2595

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ajayaghosh A, Arunkumar E, Daub J (2002) A highly specific Ca2+-Ion sensor: signaling by exciton interaction in a rigidā€“flexibleā€“rigid bichromophoric ā€œhā€ foldamerangew. Chem Int Ed 41:1766

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ajayaghosh A, Chithra P, Varghese R, Divya KP (2008) Controlled self-assembly of squaraines to 1D supramolecular architectures with high molar absorptivity. Chem Commun 969

    Google ScholarĀ 

  • Arunkumar E, Ajayaghosh A, Daub J (2005a) Selective calcium ion sensing with a bichromophoric squaraine foldamer. J Am Chem Soc 127:3156

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arunkumar E, Forbes CC, Noll BC, Smith BD (2005b) Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. J Am Chem Soc 127, 3288

    Google ScholarĀ 

  • Beverina L, Salice P (2010) Squaraine compounds: tailored design and synthesis towards a variety of material science applications. Eur J Org Chem 1207

    Google ScholarĀ 

  • Bigelow RW, Freund H (1986) An MNDO and CNDO / S(S + DES CI) study on the structural and electronic properties of a model squaraine dye and related cyanine. Chem Phys 107, 159

    Google ScholarĀ 

  • Ceymamm H, Balkenhohl M, Schmiedel A, Holzapfel M, Lambert C (2016) Localised and delocalised excitons in star-like squaraine homo- and heterotrimers. Phys Chem Chem Phys 18:2646

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ceymann H, Rosspeintner A, Schreck MH, Muetzel C, Stoy A, Vauthey E, Lambert C (2016) Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores. Phys Chem Chem Phys 18:16404

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen CT, Marder SR, Cheng LT (1994) Molecular first hyperpolarizabilities of a new class of asymmetric squaraine dyes. J Chem Soc Chem Commun 259

    Google ScholarĀ 

  • Chen H, Law KY, Perlstein J, Whitten DG (1995) Amphiphilic squaraine dye aggregates: evidence for a cyclic chiral structure as a general supramolecular structure for aggregates of dyes and aromatic molecules. J Am Chem Soc 117:7257

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen G, Sasabe H, Igarashi T, Hong Z, Kido J (2015) Squaraine dyes for organic photovoltaic cells. J Mater Chem A 3:14517 and references therein

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chung S-J, Zheng S, Odani T, Beverina L, Fu J, Padilha LA, Biesso A, Hales JM, Zhan X, Schmidt K, Ye A, Zojer E, Barlow S, Hagan DJ, Van Stryland EW, Yi Y, Shuai Z, Pagani GA, Bredas J-L, Perry JW, Marder SR (2006) Extended squaraine dyes with large two-photon absorption cross-sections. J Am Chem Soc 128:14444

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Das S, Thomas KG, Thomas KJ, Kamat PV, George MV (1994) Photochemistry of squaraine syes: 8. photophysical properties of crown ether squaraine fluoroionophores and their metal ion complexes. J Phys Chem 98, 9291

    Google ScholarĀ 

  • Eldo J, Ajayaghosh A (2002) New low band gap polymers: control of optical and electronic properties in near infrared absorbing Ļ€-conjugated polysquaraines. Chem Mater 14:410

    ArticleĀ  CASĀ  Google ScholarĀ 

  • GsƤnger M, Kirchner E, Stolte M, Burschka C, Stepanenko V, Pflaum J, WĆ¼rthner F (2014) High-performance organic thin-film transistors of j-stacked squaraine dyes. J Am Chem Soc 136:2351

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Havinga EE, ten Hoeve W, Wynberg H (1993) Alternate donor-acceptor small-band-gap semiconducting polymers; polysquaraines and polycroconaines. Synth Met 55:299

    ArticleĀ  CASĀ  Google ScholarĀ 

  • He GS, Tan L-S, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245ā€“1330

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jradi FM, Kang X, Oā€™Neil D, Pajares G, Getmanenkp YA, Szymanski P, Parker TC, El-Sayed MA, Marder SR (2015) Near-infrared asymmetrical squaraine sensitizers for highly efficient dye sensitized solar cells: the effect of Ļ€-bridges and anchoring groups on solar cell performance. Chem Mater 27:2480

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Keil D, Hartmann H (2001) Synthesis and characterization of a new class of unsymmetrical squaraine dyes. Dyes Pigms 49:161

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Law K-Y (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93:449

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Law K-Y (1987) Squaraine chemistry: effects of structural changes on the absorption and multiple fluorescence emission of bis[4-(dimethylamino)phenyl]squaraine and its derivatives. J Phys Chem 91:5184

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Law KY (1992) Squaraine chemistry: design, synthesis and xerographic properties of a highly sensitive unsymmetrical fluorinated squaraine. Chem Mater 4, 605

    Google ScholarĀ 

  • Law KY, Bailey FC (1986) Sqararaine chemistry: Synthesis of bis(4-dimethylaminophenyl)squaraince from dialkyl squarates. Mechanism and scope of the synthesis. Can J Chem 64, 2267

    Google ScholarĀ 

  • Liebeskind LS, Fengl RW (1990) 3-stannylcyclobutenediones as nucleophilic cyclobutenedione equivalents. synthesis of substituted cyclobutenediones and cyclobutenedione monoacetals and the beneficial effect of catalytic copper iodide on the stille reaction. J Org Chem 55, 5359

    Google ScholarĀ 

  • Liebeskind LS, Fengl RW, Wirtz KR, Shawe TT (1988) An improved method for the synthesis of substituted cyclobutenediones. J Org Chem 53:2482

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu T, Liu X, Valencia MA, Sui B, Zhang Y, Belfield KD (2017) Far-red-emitting TEG-substituted squaraine dye: synthesis, optical properties, and selective detection of cyanide in aqueous solution. Eur J Org Chem 3957

    Google ScholarĀ 

  • Li J-Y, Chen C-Y, Lee C-P, Chen S-C, Lin T-H, Tsai H-H, Ho K-C, Wu C-G (2010) Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells. Org Lett 12:5454

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maahs G, Hegengerg P (1966) Syntheses and derivatives of squaric acid. Angew Chem Int Ed 5:888

    ArticleĀ  Google ScholarĀ 

  • Maeda T, Shima N, Tsukamoto T, Yagi S, Nakazumi H (2011a) Unsymmetrical squarylium dyes with Ļ€-extended heterocyclic components and their application to organic dye-sensitized solar cells. Synth Met 161:2481

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maeda T, Hamamura Y, Miyanaga K, Shima N, Yagi S, Nakazumi H (2011b) Near-infrared absorbing squarylium dyes with linearly extended Ļ€-conjugated structure for dye-sensitized solar cell applications. Org Lett 13:5994

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maeda T, Tsukamoto T, Seto A, Yagi S, Nakazumi H (2012) Synthesis and characterization of squaraine-based conjugated polymers with phenylene linkers for bulk heterojunction solar cells. Macromol Chem Phys 213, 2590

    Google ScholarĀ 

  • Maeda T, Arikawa S, Nakao H, Yagi S, Nakazumi H (2013) Linearly Ļ€-extended squaraine dyes enable the spectral response of dye-sensitized solar cells in the NIR region over 800 nm. New J Chem 37:701

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maeda T, Mineta S, Fujiwara H, Nakao H, Yagi S, Nakazumi H (2013) Conformational effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells. J Mater Chem A 1, 1303

    Google ScholarĀ 

  • Maeda T, Nguyen TV, Kuwano Y, Chen X, Miyanaga K, Nakazumi H, Yagi S, Soman S, Ajayaghosh A (2018) Intramolecular exciton-coupled squaraine dyes for dye-sensitized solar cells. J Phys Chem C 122:21745

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mayerhƶffer U, Deing K, GruƟ H, Braunschweig K, Meerholz F. WĆ¼rthner (2009) Outstanding short-circuit currents in BHJ solar cells based on NIR-absorbing acceptor-substituted squaraines. Angew Chem Int Ed 48, 8776

    Google ScholarĀ 

  • Mayerhƶffer U, WĆ¼rthner F (2012) Cooperative self-assembly of squaraine dyes. Chem Sci 3:1215

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mayerhƶffer U, GsƤnger M, Stolte M, Fimmel B, WĆ¼rthner F (2013) Synthesis and molecular properties of acceptor-substituted squaraine dyes. Chem Eur J 19:218

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • McEwen JJ, Wallace KJ (2009) Squaraine dyes in molecular recognition and self-assembly. Chem Commun 6339

    Google ScholarĀ 

  • Nakazumi H, Natsukawa K, Nakai K, Isagawa K (1994) Synthesis and structure of new cationic squarylium dyes. Angew Chem Int Ed 33:1001

    ArticleĀ  Google ScholarĀ 

  • Nakazumi H, Colyer CL, Kaihara K, Yagi S, Hyodo Y (2003) Red luminescent squarylium dyes for noncovalent HSA labeling. Chem Lett 32:804

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nakazumi H, Ohta T, Etoh H, Uno T, Colyer CL, Hyodo H, Yagi S (2005) Near-infrared luminescent bis-squaraine dyes linked by a thiophene or pyrene spacer for noncovalent protein labeling. Synth Met 153:33

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen TV, Maeda T, Nakazumi H, Yagi S (2016) Linear and tripodal squaraine sensitizers with triphenylamine donor components for dye-sensitized solar cells. Chem Lett 45:291

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Odom S, Webster S, Padilha L, Peceli D, Hu H, Nootz G, Chung S, Ohira S, Matichak J, Przhonska O (2009) Synthesis and two-photon spectrum of a Bis(Porphyrin)-substituted squaraine. J Am Chem Soc 131:7510ā€“7511

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ouchi K, Colyer CL, Sebaiy M, Zhou Z, Maeda T, Nakazumi H, Shibukawa M, Saito S (2015) Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths. Anal Chem 87:1933

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ramaiah D, Joy A, Chandrasekhar N, Eldho NV, Das S, George MV (1997) Halogenated squaraine dyes as potential photochemotherapeutic agents: synthesis and study of photophysical properties and quantum efficiencies of singlet oxygen generation. Photochem Photobiol 65, 783

    Google ScholarĀ 

  • Ried W, Vogl M (1977) Reaktionen von cyclobutendionen, XLV: reaktion von cyclobutendionen mit fluoren. Liebigs Ann Chem 101ā€“105

    Google ScholarĀ 

  • Ronchi E, Ruffo R, Rizzato S, Albinati A, Beverina L, Pagani G (2011) A, regioselective synthesis of 1,2- versus 1,3-squaraines. Org Lett 13:3166

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ros-Lis JV, MartĆ­nez-MƔƱez R, SancenĆ³n F, Soto J, Spieles M, Rurack K (2008) Squaraines as reporter units: insights into their photophysics, protonation, and metal-ion coordination behaviour. Chem Eur J 14:10101

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Saito S, Massie TL, Maeda T, Nakazumi H, Colyer CL (2012) On-column labeling of gram-positive bacteria with a boronic acid functionalized squarylium cyanine dye for analysis by polymer-enhanced capillary transient isotachophoresis. Anal Chem 84:2452

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scherer D, Dƶrfler R, Feldner A, Vogtmann T, Schwoerer M, Lawrentz U, Grahn W, Lambert C (2002) Two-photon states in squaraine monomers and oligomers. Chem Phys 279:179

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schmidt AH (1980) The chemistry of squaraines. In: West R (ed) Oxocarbons. Academic Press, New York, p 185

    ChapterĀ  Google ScholarĀ 

  • Shaw SK, Schreiber CL, Roland FM, Battles PM, Brennan SP, Padanilam SJ, Smith BD (2018) High expression of integrin Ī±vĪ²3 enables uptake of targeted fluorescent probes into ovarian cancer cells and tumors. Bioorg Med Chem 26:2085

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Shi Q, Chen W-Q, Xiang J, Duan X-M, Zhan X (2011a) A low-bandgap conjugated polymer based on squaraine with strong two-photon absorption. Macromolecules 44:3759

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shi Y, Hill RBM, Yum J-H, Dualeh A, Barlow S, GrƤtzel M, Marder SR, Nazeeruddin MK (2011b) A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells. Angew Chem Int Ed 50:6619

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ (2008) Efficient squaraine-based solution processable bulk-heterojunction solar cells. J Am Chem Soc 130:17640ā€“17641

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sprenger HE, Ziegenbein W (1968) Cyclobutenediylium dyes. Angew Chem Int Ed 7:530

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sreejith S, Carol P, Chithra P, Ajayaghosh A (2008a) Squaraine dyes: a mine of molecular materials. J Mater Chem 18:264

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sreejith S, Divya K, Ajayaghosh A (2008b) A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma. Angew Chem Int Ed 47:7883

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun W, Guo S, Hu C, Fan J, Peng X (2016) Recent development of chemosensors based on cyanine platforms. Chem Rev 116:7768

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tatarets AL, Fedyunyaeva IA, Terpetschnig E, Patsenker LD (2005) Synthesis of novel squaraine dyes and their intermediates. Dyes Pigms 64:125

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Terpetschnig E, Lakowicz JR (1993) Synthesis and characterization of unsymmetrical squaraines: a new class of cyanine dyes. Dye Pigms 21:227

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Treibs A, Jakob K (1965) Cyclotrimethine dyes derived from squaric acid. Angew Chem Int Ed 4:694

    ArticleĀ  Google ScholarĀ 

  • Vƶlker SF, Uemura S, Limpins M, Mingebach M, Deibel C, Dyakonov V, Lambert C (2010) Polymeric squaraine dyes as electron donors in bulk heterojunction solar cells. Macromol Chem Phys 211, 1098

    Google ScholarĀ 

  • Vƶlker SF, Lambert C (2012) Exciton coupling effects in polymeric cis-indolenine squaraine dyes. Chem Mater 24:2541

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wei G, Wang S, Sun K, Thompson ME, Forrest SR (2011) Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells. Adv Energy Meter 1:184

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Welder F, Paul B, Nakazumi H, Yagi S, Colyer CL (2003) Symmetric and asymmetric squarylium dyes as noncovalent protein labels: a study by fluorimetry and capillary electrophoresis. J Chromatog B 793:93

    ArticleĀ  CASĀ  Google ScholarĀ 

  • West R (1980) Histry of The Oxocarbons. In: West R (ed) Oxocarbons. Academic Press, New York, p 1

    Google ScholarĀ 

  • Yagi S, Nakazumi H (2008) Squarylium dyes and related compounds. Top Heterocycl Chem 14:133

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yagi S, Murayama S, Hyodo Y, Fujie Y, Hirose M, Nakazumi H (2002) Synthesis and light absorption/emission properties of novel bis-squaraine dyes with extensively conjugated Ļ€-electron systems. J Chem Soc, Perkin Trans 1, 1417

    Google ScholarĀ 

  • Yagi S, Ohta T, Akagi N, Nakazumi H (2008) The synthesis and optical properties of bis-squarylium dyes bearing arene and thiophene spacers. Dyes Pigms 77:525

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yagi S, Nakasaku Y, Maeda T, Nakazumi H, Sakurai Y (2011) Synthesis and near-infrared absorption properties of linearly Ļ€-extended squarylium oligomers. Dyes Pigms 90:211

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yom JH, Walter P, Huber S, Rentsch D, Geiger T, NĆ¼esch F, De Angelis F, GrƤtzel M, Nazeeruddin MK (2007) Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J Am Chem Soc 129, 10320

    Google ScholarĀ 

  • Ziegenbein W, Sprenger HE (1966) Condensation products of squaric acid and azulenic hydrocarbons. Angew Chem Int Ed 5:893

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maeda, T. (2021). Squaraine Dyes. In: Ooyama, Y., Yagi, S. (eds) Progress in the Science of Functional Dyes. Springer, Singapore. https://doi.org/10.1007/978-981-33-4392-4_2

Download citation

Publish with us

Policies and ethics