Skip to main content
Log in

Theoretical study of the structure and stability of oxo heme derivatives

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The geometric and electronic structures, energy stability, and normal mode frequencies of molecules and ions of oxo heme derivatives Heme=O0,±, Heme-O-Heme0,±, Heme-OO0,±, and Heme-OO-Heme0,± (Heme=FeC34H32N4O4) in the states of different multiplicity have been calculated by the density functional theory B3LYP method with several basis sets. Energetically preferred states have been determined, and the energies of different channels of their decomposition with dissociation of the Fe-O and O-O bonds have been estimated. The relative energies of superoxide and peroxide isomers of the dioxygenyl complexes Heme-OO0,± and Heme-OO-Heme0,± have been estimated. For the double-decker Heme-OO-Heme0,± complexes, local minima (intermediates) have been found, which correspond to the structures containing rhombic Fe(μ-O)2Fe moieties with the iron atoms linked by two covalent oxygen bridges Fe-O-Fe. The trends in the behavior of the equilibrium geometric parameters, vibrational frequencies, and spin density distribution between the Fe and O atoms and the porphyrin ring of oxohemes have been analyzed as a function of the electronic state multiplicity and the external charge of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Porphyrin Science, Ed, by K. M. Kadish, K. M. Smith, and R. Guillard (World Science, New York, 2011).

    Google Scholar 

  2. K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes (Academic, London, 1992).

    Google Scholar 

  3. Electrospray Ionization Mass Spectrometry, Ed. by R. B. Cole (Wiley, New York, 1997).

    Google Scholar 

  4. S. Nonose, H. Tanaka, N. Okai, et al., Eur. Phys. J. D 20, 619 (2002).

    Article  CAS  Google Scholar 

  5. O. P. Charkin, N. M. Klimenko, T. P. Nguyen, et al., Russ. J. Inorg. Chem. 50, 1398 (2005).

    Google Scholar 

  6. O. P. Charkin, N. Klimenko, T. P. Nguyen, et al., Chem. Phys. Lett. 415, 362 (2005).

    Article  CAS  Google Scholar 

  7. O. P. Charkin, N. M. Klimenko, T. P. Nguyen, et al., Russ. J. Inorg. Chem. 51, 1613 (2006).

    Article  Google Scholar 

  8. O. P. Charkin, N. Klimenko, D. Charkin, et al., J. Phys. Chem. A 111, 362 (2007).

    Article  Google Scholar 

  9. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Russ. J. Inorg. Chem. 52, 1088 (2007).

    Article  Google Scholar 

  10. O. P. Charkin, N. M. Klimenko, D. O. Charkin, et al., Russ. J. Inorg. Chem. 51, 89 (2006).

    Article  Google Scholar 

  11. M. J. Frish et al., GAUSSIAN 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  12. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  14. A. Ghosh, in The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guillard (Academic, San Diego, 2000), Vol. 7, Sect. 47.

  15. C. Lecomte, M.-M. Rohmer, and M. Benard, in The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guillard (Academic, San Diego, 2000), Vol. 7, Sect. 48.

  16. O. P. Charkin, A. V. Makarov, and N. M. Klimenko, Russ. J. Inorg. Chem. 53, 718 (2008).

    Article  Google Scholar 

  17. K. E. Riley and K. M. Merz, J. Phys. Chem. A 111, 6044 (2007).

    Article  CAS  Google Scholar 

  18. S. Pagola, P. W. Stephens, D. S. Bohle, et al., Nature 404, 307 (2000).

    Article  CAS  Google Scholar 

  19. Computational Inorganic and Bioinorganic Chemistry, Ed. by E. T. Solomon, R. A. Scott, and R. B. King (Wiley, New York, 2009).

    Google Scholar 

  20. D. A. Scherils, V. Coccocioni, P. Sit, and N. J. Mazzari, J. Phys. Chem. B 111, 7384 (2007).

    Article  Google Scholar 

  21. M. P. Johansen and D. Sundholm, J. Chem. Phys. 120, 3229 (2004).

    Article  Google Scholar 

  22. H. Chen, W. Lai, and S. Shaik, J. Phys. Chem. B 115, 1727.

  23. S. Shaik and H. Chen, J. Biol. Inorg. Chem 16, 841 (2011).

    Article  CAS  Google Scholar 

  24. P. E. M. Siegbahn, J. Phys. Chem. 97, 9096 (1993).

    Article  CAS  Google Scholar 

  25. A. Ghosh, J. Almlof, and L. Que, Angew. Chem. Int. Ed. Engl. 35, 770 (1996).

    Article  CAS  Google Scholar 

  26. K. Weighardt, Angew. Chem. Int. Ed. Engl. 28, 1153 (1989).

    Article  Google Scholar 

  27. G. Xue, R. De Hont, E. Muenck, and L. Que, Nature Chem. 2, 400 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Charkin.

Additional information

Original Russian Text © O.P. Charkin, 2013, published in Zhurnal Neorganicheskoi Khimii, 2013, Vol. 58, No. 3, pp. 348–359.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charkin, O.P. Theoretical study of the structure and stability of oxo heme derivatives. Russ. J. Inorg. Chem. 58, 300–310 (2013). https://doi.org/10.1134/S0036023613030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023613030042

Keywords

Navigation