Skip to main content
Log in

Structure and stability of oligomeric anions [M n X3n+ 1] (M = Al, Ga, In; X = F, Cl, Br, I; n = 2–4): A quantum-chemical study

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The structural and thermodynamic properties of oligomeric anions [M n X3n+ 1] (M = Al, Ga, In; X = F, Cl, Br, I; n = 2, 3, 4) have been obtained by the density functional theory B3LYP method with the LAN2DZ(d) and LAN2DZ(d)+ basis sets. A wide diversity of structural isomers was found for trimeric fluoride anions M3F 10 . Among the trimers, except In3F 10 , the most stable is a linear isomer composed of two MX3 molecules coordinated to the MX 4 anion. The formation of tetrameric anions M4X 13 was demonstrated to be thermodynamically allowed at low temperatures at MX3: X > 4: 1. The existence of higher oligomers is less probable. The affinity of oligomer halides (MX3) n for halide ions increases with an increase in n. The propensity to form oligomeric anions decreases in the series F > Cl ≥ Br > I. The fluoride systems show a tendency to form structures with CN = 5 and 6, these structures for In being the most stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Koptyug, Selected Works, vol. 1, books 1, 2: Carbocations. Structure and Reactivity (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  2. V. A. Koptyug, I. K. Korobeinicheva, T. P. Andreeva, and V. A. Bushmelev, Zh. Obshch. Khim. 39, 1979 (1968).

    Google Scholar 

  3. A. N. Volkov, A. Yu. Timoshkin, and A. V. Suvorov, Zh. Obshch. Khim. 74, 1498 (2004).

    Google Scholar 

  4. A. N. Volkov, A. Y. Timoshkin, and A. V. Suvorov, Int. J. Quantum Chem. 104, 256 (2005).

    Article  CAS  Google Scholar 

  5. T. Welton, Chem. Rev. 99, 2071 (1999).

    Article  CAS  Google Scholar 

  6. C. J. Dymek, J. S. Wilkes, M.-A. Einarsrud, and H. A. Øye, Polyhedron 7, 1139 (1988).

    Article  CAS  Google Scholar 

  7. A. K. Abdul-Sada, A. M. Greenway, K. R. Seddon, and T. Welton, Org. Mass Spectrom. 24, 917 (1989).

    Article  CAS  Google Scholar 

  8. A. Yu. Bogomolov, V. V. Smirnov, and T. N. Rostovshchikova, Kinet. Katal. 36(6), 831 (1995).

    Google Scholar 

  9. B. Kirchner and A. P. Seitsonen, Inorg. Chem. 46, 2751 (2007).

    Article  CAS  Google Scholar 

  10. A. Yu. Timoshkin, Zh. Neorg. Khim. 53(2), 296 (2008) [Russ. J. Inorg. Chem. 53 (2), 254 (2008)].

    CAS  Google Scholar 

  11. R. S. Nyholm and K. Ulm, J. Chem. Soc., 4199 (1965).

  12. D. Mascherpa-Corral and A. Potier, J. Inorg. Nucl. Chem. 39, 1519 (1977).

    Article  CAS  Google Scholar 

  13. Z. J. Karpinski and R. A. Osteryoung, Inorg. Chem. 23, 1491 (1984).

    Article  CAS  Google Scholar 

  14. Z. J. Karpinski and R. A. Osteryoung, Inorg. Chem. 24, 2259 (1985).

    Article  CAS  Google Scholar 

  15. A. Heerman and W. D’Olieslager, Inorg. Chem. 24, 4704 (1985).

    Article  CAS  Google Scholar 

  16. A. Yu. Timoshkin, A. V. Suvorov, and H. F. Shaeffer, III, Zh. Obshch. Khim. 68, 1682 (1998) [Russ. J. Gen. Chem. 68, 1609 (1998)].

    Google Scholar 

  17. A. Y. Timoshkin, A. V. Suvorov, H. F. Bettinger, and H. F. Schaefer, J. Am. Chem. Soc. 121, 5687 (1999).

    Article  CAS  Google Scholar 

  18. L. P. Davis, C. J. Dymek, J. J. P. Steward, et al., J. Am. Chem. Soc. 107, 5041 (1985).

    Article  CAS  Google Scholar 

  19. V. V. Smirnov and T. N. Rostovshchikova, Zh. Fiz. Khim. 71(8), 1441 (1997) [Russ. J. Phys. Chem. 71 (8), 1292 (1997)].

    CAS  Google Scholar 

  20. Physical Methods of Investigation of Inorganic Substances, Ed. by A. B. Nikol’skii (Akademiya, Moscow, 2006) [in Russian].

    Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Revision A.1 (Gaussian, Inc., Pittsburg, PA, 1998).

    Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    CAS  Google Scholar 

  24. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  CAS  Google Scholar 

  25. J. M. Galbraith and H. F. Schaefer, J. Chem. Phys. 105, 862 (1996).

    Article  CAS  Google Scholar 

  26. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA.

  27. C. E. Check, T. O. Faust, J. M. Bailey, et al., J. Phys. Chem. A 105, 8111 (2001).

    Article  CAS  Google Scholar 

  28. S. Takahashi, N. Koura, M. Murase, and H. Ohno, J. Chem. Soc., Faraday Trans. 82, 49 (1986).

    Article  CAS  Google Scholar 

  29. E. Rytter, B. E. D. Rytter, H. A. Øye, and J. Krog-Moe, Acta Crystallogr., Sect. B: Struct. Sci. 29, 1541 (1973).

    Article  CAS  Google Scholar 

  30. E. Rytter, B. E. D. Rytter, H. A. Øye, and J. Krog-Moe, Acta Crystallogr., Sect. B: Struct. Sci. 31, 2177 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Timoshkin.

Additional information

Original Russian Text © A.Yu. Timoshkin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 1, pp. 87–100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timoshkin, A.Y. Structure and stability of oligomeric anions [M n X3n+ 1] (M = Al, Ga, In; X = F, Cl, Br, I; n = 2–4): A quantum-chemical study. Russ. J. Inorg. Chem. 54, 86–99 (2009). https://doi.org/10.1134/S0036023609010161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023609010161

Keywords

Navigation