Skip to main content
Log in

Central Nervous System, Hormonal Regulation and Sensory Control of Schooling Behavior of Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Data on the role of brain regions (forebrain, midbrain and other structures) in the control of schooling behavior of fish has been systematized. Data have been presented on the influence of the presence in the food of certain substances (docosahexaenoic acid) accumulating in the brain on the rate of formation of schooling behavior in fish ontogeny. The neurohormonal system may be involved in the regulation of schooling behavior. The individual behavior of fish in a school depends on the lateralization of brain functions. Attention has been drawn to the extremely poor knowledge of the processes of central and hormonal regulation of schooling behavior of fish. Vision is the leading, and most often the only sensory system that enables fish to demonstare schooling behavior. Monomodality distinguishes schooling behavior from other complex forms of fish behavior. Visual deprivation or deterioration of the conditions for visual reception makes schooling reactions of fish difficult or completely impossible. Existing assumptions about the possible participation in schooling behavior of other sensory systems of fish—lateral line, hearing, olfaction, electroreception—have been critically analyzed. Strict evidence of the real involvement of these sensory systems in the mediation of schooling contacts in fish is still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The yellow-eyed mullet has a large number of superficial neuromasts on the body, they are located on each scale in these fish, each of the neuromasts includes several hundred receptor (hair) cells (Middlemiss et al., 2017).

REFERENCES

  1. Aronov, M.P., School contact and reaction of fish to a mirror, in Povedenie i retseptsii ryb (Behavior and Reception of Fish), Moscow: Nauka, 1967, pp. 18–23.

  2. Atz, J.W., Orientation in schooling fishes, Proc. Conf. Orientation in Animals, Washington: O.N.A, 1953, pp. 103–130.

  3. Basov, B.M., Electric fields of fish in their ecology, in Osnovnye osobennosti povedeniya i orientatsii ryb (Basic Features of Behavior and Orientation of Fish), Moscow: Nauka, 1974, pp. 107–121.

  4. Bayandurov, B.I., Troficheskaya funktsiya golovnogo mozga (Trophic Function of the Brain), Moscow: Medgiz, 1949.

  5. Berwein, J.J., Beobachtungen und Versuche über das gesellige Leben von Elritzen, Z. Vergl. Physiol., 1941, vol. 28, no. 4, pp. 402–420.

    Article  Google Scholar 

  6. Bibost, A.-L. and Brown, C., Laterality enhances schooling position in rainbowfish, Melanotaenia spp, PLOS One, 2013, vol. 8, no. 11, Article e80907. https://doi.org/10.1371/journal.pone.0080907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bilandžija, H., Ma, L., Parkhurst, A., and Jeffery, W.R., A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis, PLOS One, 2013, vol. 8, no. 11, Article e80823. https://doi.org/10.1371/journal.pone.0080823

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bisazza, A. and Brown, C., Lateralization of cognitive functions in fish, in Fish Cognition and Behavior, Oxford: Wiley, 2011, pp. 298–324.

    Google Scholar 

  9. Bleckmann, H., Role of the lateral line in fish behaviour, in Behaviour of Teleost Fishes, London: Chapman and Hall, 1993, pp. 201–246.

    Google Scholar 

  10. Breder, C.M., Certain effects in the habit of schooling fiches as based on the observations of Jenkinsia, Am. Mus. Novit., 1929, no. 382, pp. 1–5.

  11. Breder, C.M., Studies on social groupings in fishes, Bull. Am. Mus. Nat. Hist., 1959, vol. 117, Article 6, pp. 393–482.

  12. Breder, C.M., Fish schools as operational structures, Fish. Bull., 1976, no. 74, pp. 471–502.

  13. Breder, C.M. and Rasquin, P., Comparative studies in the light sensitivity of blind characins from a series of Mexican caves, Bull. Am. Mus. Nat. Hist., 1947, vol. 89, Article 5, pp. 319–352.

  14. Broun, G.R. and Il’inskii, O.B., Fiziologiya elektroretseptorov (Physiology of Electroreceptors), Leningrad: Nauka, 1984.

  15. Brown, C., Fish intelligence, sentience and ethics, Anim. Cogn., 2015, vol. 18, no. 1, pp. 1–17. https://doi.org/10.1007/s10071-014-0761-0

    Article  PubMed  Google Scholar 

  16. Brown, C., Gardner, C., and Braithwaite, V.A., Population variation in lateralized eye use in the poeciliid Brachyraphis episcopi, Proc. R. Soc. Lond. B., 2004, vol. 271, no. Suppl. 6, pp. S455–S457. https://doi.org/10.1098/rsbl.2004.0222

  17. Darkov, A.A., Ekologicheskie osobennosti zritel’noi signalizatsii ryb (Ecological Features of Visual Signaling in Fish), Moscow: Nauka, 1980.

  18. Devitsina, G.V. and Marusov, E.A., Interaction of chemosensory systems and feeding behavior of fish, Usp. Sovrem. Biol., 2007, vol. 127, no. 4, pp. 387–395.

    Google Scholar 

  19. Dijkgraaf, S., Lokalisationsversuche am Fischgehirn, Experientia, 1949, vol. 5, no. 1, pp. 44–45. https://doi.org/10.1007/bf02164653

    Article  Google Scholar 

  20. Elipot, Y., Hinaux, H., Callebert, J., and Rétaux, S., Evolutionary shift from fighting to foraging in blind cavefish through changes in the serotonin network, Curr. Biol., 2013, vol. 23, no. 1, pp. 1–10. https://doi.org/10.1016/j.cub.2012.10.044

    Article  CAS  PubMed  Google Scholar 

  21. Elipot, Y., Hinaux, H., Callebert, J., et al., A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome, Nat. Commun., 2014, vol. 5, no. 1, Article 3647. https://doi.org/10.1038/ncomms4647

    Article  CAS  PubMed  Google Scholar 

  22. Faucher, K., Parmentier, E., Becco, C., et al., Fish lateral system is required for accurate control of shoaling behaviour, Anim. Behav., 2010, vol. 79, no. 3, pp. 679–687. https://doi.org/10.1016/j.anbehav.2009.12.020

    Article  Google Scholar 

  23. Gerasimov, V.V., Ekologo-fiziologicheskie zakonomernosti stainogo povedeniya ryb (Ecological and Physiological Patterns of Schooling Behavior of Fish), Moscow: Nauka, 1983.

  24. Gray, J.A.B. and Denton, E.J., Fast pressure pulses and communication between fish, J. Mar. Biol. Assoc. U.K., 1991, vol. 71, no. 1, pp. 83–106. https://doi.org/10.1017/S0025315400037413

    Article  Google Scholar 

  25. Hayashi, N., Nakamura, S., Yoshikawa, H., et al., A role of olfaction in schooling of Japanese sea catfish, Plotosus lineatus, Jpn. J. Ichthyol., 1994, vol. 41, no. 1, pp. 7–13. https://doi.org/10.11369/JJI1950.41.7

    Article  Google Scholar 

  26. Helfman, G.S., Twilling activities of yellow perch, Perca flavescens, J. Fish. Res. Board Can., 1979, vol. 36, no. 2, pp. 173–179. https://doi.org/10.1139/f79-027

    Article  Google Scholar 

  27. Hosch, L., Untersuchungen über Grosshirnfunktionen der Elritze (Phoxinus laevis) und des Gründlings (Gobio fluviatilis), Zool. Jahrb., Abt. Allg. Zool. Physiol. Tiere, 1936, vol. 57, no. 1, pp. 57–98.

    Google Scholar 

  28. Irving, E. and Brown, C., Examining the link between personality and laterality in a feral guppy Poecilia reticulata population, J. Fish. Biol., 2013, vol. 83, no. 2, pp. 311–325. https://doi.org/10.1111/jfb.12165

    Article  CAS  PubMed  Google Scholar 

  29. Ishizaki, Y., Masuda, R., Uematsu, K., et al., The effect of dietary docosahexaenoic acid on schooling behavior and brain development in larval yellowtail, J. Fish. Biol., 2001, vol. 58, no. 6, pp. 1691–1703. https://doi.org/10.1111/j.1095-8649.2001.tb02323.x

    Article  CAS  Google Scholar 

  30. Ito, H., Ishikawa, Y., Yoshimoto, M., and Yamamoto, N., Diversity of brain morphology in teleosts: Brain and ecological niche, Brain Behav. Evol., 2007, vol. 69, no. 2, pp. 76–86. https://doi.org/10.1159/000095196

    Article  PubMed  Google Scholar 

  31. Karamyan, A.I., Malyukova, I.V., and Sergeev, B.F., Participation of the telencephalon of bony fish in the implementation of complex conditioned reflex and general behavioral reactions, in Povedenie i retseptsii ryb (Behavior and Reception of Fish), Moscow: Nauka, 1967, pp. 109–113.

  32. Kasumyan, A.O., The lateral line in fish: Structure, function, and role in behavior, J. Ichthyol., 2003, vol. 43, no. Suppl. 2, pp. S175–S213.

  33. Kasumyan, A.O. and Marusov, E.A., Chemoreception in chronically anosmiated fish: A phenomenon of compensatory development of the gustatory system, J. Ichthyol., 2007, vol. 47, no. 8, pp. 647–655. https://doi.org/10.1134/S0032945207080115

    Article  Google Scholar 

  34. Kavaliers, M., Schooling behavior of fish: An opiate-dependent activity?, Behav. Neural Biol., 1981, vol. 33, no. 4, pp. 397–401. https://doi.org/10.1016/s0163-1047(81)91743-x

    Article  CAS  PubMed  Google Scholar 

  35. Keenleyside, M.H.A., Some aspects of the schooling behaviour of fish, Behaviour, 1955, vol. 8, no. 1, pp. 183–248. https://doi.org/10.1163/156853955X00229

    Article  Google Scholar 

  36. Keenleyside, M.H.A., Diversity and Adaptation in Fish Behavior, Heidelberg: Springer-Verlag, 1979.

    Book  Google Scholar 

  37. Köhler, D., Zur Struktur und Funktion des Fischwarmes, Biol. Rdsch., 1979, vol. 17, no. 1, pp. 24–34.

    Google Scholar 

  38. Kotrschal, A., Szorkovszky, A., Romenskyy, M., et al., Brain size does not impact shoaling dynamics in unfamiliar groups of guppies (Poecilia reticulata), Behav. Processes, 2018, vol. 147, pp. 13–20. https://doi.org/10.1016/j.beproc.2017.12.006

    Article  PubMed  Google Scholar 

  39. Kowalko, J.E., Rohner, N., Rompani, S.B., et al., Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms, Curr. Biol., 2013, vol. 23, no. 19, pp. 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larsson, M., Possible functions of the octavolateralis system in fish schooling, Fish Fish., 2009, vol. 10, no. 3, pp. 344–353. https://doi.org/10.1111/j.1467-2979.2009.00330.x

    Article  Google Scholar 

  41. Liao, J.C., A review of fish swimming mechanics and behaviour in altered flows, Phil. Trans. R. Soc. London B., 2007, vol. 362, no. 1487, pp. 1973–1993. https://doi.org/10.1098/rstb.2007.2082

    Article  Google Scholar 

  42. Lorenz, K., On Aggression, London: Routledge, 2002.

    Google Scholar 

  43. Malyukina, G.A., Aleksandryuk, S.P., Shtefanesku, M., On the role of vision in the schooling behavior of the minnow (Phoxinus phoxinus) and the crucian carp (Carassius carassius), Vopr. Ikhtiol., 1962, vol. 2, no. 3, pp. 511–516.

    Google Scholar 

  44. Malyukina, G.A., Dmitrieva, N.G., Marusov, E.A., and Yurkevich, G.V., Olfactory and its role in the behavior of fish, in Itogi nauki. 1968. Zoologiya (Science Results. 1968. Zoology), Moscow: Vsesoyuzn. Inst. Nauchn. Tekh. Inf. Akad. Nauk SSSR, 1969, pp. 32–78.

  45. Manteifel’, B.P., Ekologicheskie i evolyutsionnye aspekty povedeniya zhivotnykh (Ecological and Evolutionary Aspects of Animal Behavior), Moscow: Nauka, 1987.

  46. Manteifel’, B.P., Girsa, I.I., Leshcheva, T.S., and Pavlov, D.S., Influence of changing illumination on the formation and breakup of schools in fish, in Pitanie khishchnykh ryb i ikh vzaimootnosheniya s kormovymi organizmami (Nutrition of Predatory Fish and Their Relationship with Forage Organisms), Moscow: Nauka, 1965, pp. 83–90.

  47. Masuda, R., Takeuchi, T., Tsukamoto, K., et al., Critical involvement of dietary docosahexaenoic acid in the ontogeny of schooling behaviour in the yellowtail, J. Fish. Biol., 1998, vol. 53, no. 3, pp. 471–484. https://doi.org/10.1111/j.1095-8649.1998.tb00996.x

    Article  CAS  Google Scholar 

  48. Matsumura, K., Matsunaga, S., and Fusetani, N., Possible involvement of phosphatidylcholine in school recognition in the catfish, Plotosus lineatus, Zool. Sci., 2004, vol. 21, no. 3, pp. 257–264. https://doi.org/10.2108/zsj.21.257

    Article  CAS  Google Scholar 

  49. Matsumura, K., Matsunaga, S., and Fusetani, N., Phosphatidylcholine profile-mediated group recognition in catfish, J. Exp. Biol., 2007, vol. 210, no. 11, pp. 1992–1999. https://doi.org/10.1242/jeb.02777

    Article  CAS  PubMed  Google Scholar 

  50. Mekdara, P.J., Schwalbe, M.A.B., Coughlin, L.L., and Tytell, E.D., The effects of lateral line ablation and regeneration in schooling giant danios, J. Exp. Biol., 2018, vol. 221, no. 8, Article jeb175166. https://doi.org/10.1242/jeb.175166

    Article  PubMed  Google Scholar 

  51. Middlemiss, K.L., Cook, D.G., Jerrett, A.R., and Davison, W., Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri), J. Comp. Physiol. A, 2017, vol. 203, no. 10, pp. 807–817. https://doi.org/10.1007/s00359-017-1192-6

    Article  Google Scholar 

  52. Middlemiss, K.L., Cook, D.G., Jaksons, P., et al., Lateralisation of visual function in yellow-eyed mullet (Aldrichetta forsteri) and its role in schooling behavior, Mar. Freshw. Behav. Physiol., 2018, vol. 51, no. 1, pp. 15–29. https://doi.org/10.1080/10236244.2018.1439696

    Article  Google Scholar 

  53. Modarressie, R., Rick, I.P., and Bakker, T.C.M., UV matters in shoaling decisions, Proc. R. Soc. B., 2006, vol. 273, no. 1588, pp. 849–854. https://doi.org/10.1098/rspb.2005.3397

    Article  PubMed  Google Scholar 

  54. Moller, P., Electric signals and schooling behavior in a weakly electric fish, Marcusenius cyprinoides L. (Mormyriformes), Science, 1976, vol. 193, no. 4254, pp. 697–699. https://doi.org/10.1126/science.948747

    Article  CAS  PubMed  Google Scholar 

  55. Moller, P., Electric Fishes: History and Behavior, London: Chapman and Hall, 1995.

    Google Scholar 

  56. Montgomery, J., Coombs, S., and Halstead, M., Biology of the mechanosensory lateral line in fishes, Rev. Fish Biol. Fish., 1995, vol. 5, no. 4, pp. 399–416. https://doi.org/10.1007/BF01103813

    Article  Google Scholar 

  57. Morrow, J.E., Schooling behaviour in fishes, Quart. Rev. Biol., 1948, vol. 23, no. 1, pp. 27–38. https://doi.org/10.1086/396078

    Article  PubMed  Google Scholar 

  58. Mourente, G., Tocher, D.R., and Sargent, J.R., Specific accumulation of docosahexaenoic acid (22:6n-3) in brain lipids during development of juvenile turbot Acophthalmus maximus L, Lipids, 1991, vol. 26, no. 11, pp. 871–877. https://doi.org/10.1007/BF02535970

    Article  CAS  Google Scholar 

  59. Muraveiko, V.M., Elektrosensornye sistemy zhivotnykh (Electrosensory Systems of Animals), Apatity: Kol. Fil. Akad. Nauk SSSR, 1988.

  60. Nikonorov, S.I., Perednii mozg i povedenie ryb (Forebrain and Fish Behavior), Moscow: Nauka, 1982.

  61. Nolte, W., Experimentelle Untersuchungen zum Problem der Lokalisation des Assoziationsvermögens in Fischgehirn, Z. Vergl. Physiol., 1932, vol. 18, no. 2, pp. 255–279.

    Article  Google Scholar 

  62. Parr, A.E., A contribution to the theoretical analyses of the schooling behaviour of fishes, Occas. Pap. Bigham Oceanogr. Coll., 1927, vol. 1, pp. 1–32.

    Google Scholar 

  63. Parr, A.E., Sex dimorphism and schooling behavior among fishes, Am. Natur., 1931, vol. 65, no. 697, pp. 173–180. https://doi.org/10.1086/280359

    Article  Google Scholar 

  64. Partridge, B.L. and Pitcher, T.J., The sensory basis of fish schools: Relative roles of lateral line and vision, J. Comp. Physiol., 1980, vol. 135, no. 4, pp. 315–325. https://doi.org/10.1007/BF00657647

    Article  Google Scholar 

  65. Partridge, B.L., Pitcher, T.J., Cullen, J.M., and Wilson, J., The three-dimensional structure of fish schools, Behav. Ecol. Sociobiol., 1980, vol. 6, no. 4, pp. 277–288. https://doi.org/10.1007/BF00292770

    Article  Google Scholar 

  66. Pavlov, D.S., On the accessibility of the juvenile silversides to the pickarels under different illumination conditions, Zool. Zh., 1962, vol. 41, no. 6, pp. 948–950.

    Google Scholar 

  67. Pavlov, D.S. and Kasumyan, A.O., Sensory principles of the feeding behaviour of fishes, J. Ichthyol., 1990, vol. 30, no. 6, pp. 77–93.

    CAS  Google Scholar 

  68. Pavlov, D.S. and Kasumyan, A.O., The structure of the feeding behavior of fishes, J. Ichthyol., 1998, vol. 38, no. 1, pp. 116–128.

    Google Scholar 

  69. Pita, D., Moore, B.A., Tyrrell, L.P., and Fernández-Juricic, E., Vision in two cyprinid fish: Implications for collective behavior, PeerJ., 2015, vol. 3, Article e1113. https://doi.org/10.7717/peerj.1113

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pitcher, T.J. and Parrish, B.L., Functions of shoaling behavior in teleosts, in Behaviour of Teleost Fishes, London: Chapman and Hall, 1993, pp. 262–439.

    Book  Google Scholar 

  71. Pitcher, T.J., Partridge, B.L., and Wardle, C.S., A blind fish can school, Science, 1976, vol. 194, no. 4268, pp. 963–965. https://doi.org/10.1126/science.982056

    Article  CAS  PubMed  Google Scholar 

  72. Popper, A.N. and Platt, C., Inner ear and lateral line, in The Physiology of Fishes, Boca Raton: CRC Press, 1993, pp. 99–136.

    Google Scholar 

  73. Popper, A.N. and Fay, R.R., Sound detection and processing by fish: Critical review and major research questions, Brain Behav. Evol., 1993, vol. 41, no. 1, pt. 1, pp. 14–25, pt. 2, pp. 26–38. https://doi.org/10.1159/000113821; https://doi.org/10.1159/000316111

  74. Protasov, V.R., Bioelektricheskie polya v zhizni ryb (Bioelectric Fields in the Life of Fish), Moscow: TsNIITENRKh, 1972.

  75. Puchkov, N.V., Fiziologiya ryb (Physiology of Fishes), Moscow: Pishchepromizdat, 1954.

  76. Radakov, D.V., Schooling in the Ecology of Fish, New York: John Wiley, 1973.

    Google Scholar 

  77. Rountree, R.A. and Sedberry, G.R., A theoretical model of shoaling behavior based on a consideration of patterns of overlap among the visual fields of individual members, Acta Ethol., 2009, vol. 12, no. 2, pp. 61–70. https://doi.org/10.1007/s10211-009-0057-6

    Article  Google Scholar 

  78. Santacà, M., Dadda, M., and Bisazza, A., The role of visual and olfactory cues in social decisions of guppies and zebrafish, Anim. Behav., 2021, vol. 180, pp. 209–217. https://doi.org/10.1016/j.anbehav.2021.08.017

    Article  Google Scholar 

  79. Schäfer, W., Über das Verhalten von Jungerherings – schwärmen im Aquarium, Arch. Fischereiwiss, vol. 6, 1955, nos. 5/6, pp. 276–287.

  80. Shaw, E., the development of schooling behaviour in fishes, Physiol. Zool., 1960, vol. 33, no. 2, pp. 79–86. https://doi.org/10.1086/physzool.33.2.30152296

    Article  Google Scholar 

  81. Shaw, E., The schooling of fishes, Sci. Am., 1962, vol. 206, no. 6, pp. 128–141. https://doi.org/10.1038/scientificamerican0662-128

    Article  Google Scholar 

  82. Shaw, E., The duration of schooling among fish separated and those not separated by barriers, Am. Mus. Novit., 1969, no. 2373, pp. 1–13.

  83. Sparwasser, K., The influence of metoclopramide and melatonin on activity and schooling behaviour in Chromis viridis (CUVIER, 1830; Pomacentridae, Teleostei), Mar. Ecol., 1987, vol. 8, no. 4, pp. 297–312. https://doi.org/10.1111/j.1439-0485.1987.tb00190.x

    Article  CAS  Google Scholar 

  84. Spooner, C.M., Some observations on schooling in fish, J. Mar. Biol. Assoc. UK, 1931, vol. 17, no. 2, pp. 421–448. https://doi.org/10.1017/s0025315400050943

    Article  Google Scholar 

  85. Strickler, A.G. and Soares, D., Comparative genetics of the central nervous system in epigean and hypogean Astyanax mexicanus, Genetics, 2011, vol. 139, no. 3, pp. 383–391. https://doi.org/10.1007/s10709-011-9557-1

    Article  Google Scholar 

  86. Vega-Trejo, R., Boussard, A., Wallander, L., et al., Artificial selection for schooling behaviour and its effects on associative learning abilities, J. Exp. Biol., 2020, vol. 223, no. 23, Article jeb235093. https://doi.org/10.1242/jeb.235093

    Article  PubMed  Google Scholar 

  87. Ward, A.J.W., Axford, S., and Krause, J., Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice, Behav. Ecol. Sociobiol., 2002, vol. 52, no. 3, pp. 182–187. https://doi.org/10.1007/s00265-002-0505-z

    Article  Google Scholar 

  88. Wielback, U., Untersuchungen zur Funktion des Vorderhirns bei Knochenfischen, Zool. Anz., 1937, vol. 117, nos. 11/12, pp. 325–329.

    Google Scholar 

  89. Wilkens, H., Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) support for the neutral mutation theory, Evol. Biol., New York: Plenum Publ. Corp., 1988, vol. 23, pp. 271–367. https://doi.org/10.1007/978-1-4613-1043-3_8

    Article  Google Scholar 

  90. Wullimann, M.F., The central nervous system, in The Physiology of Fishes, Boca Raton: CRC Press, 1998. pp. 245–282.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.A. Kazhlaev and L.S. Alekseeva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Central Nervous System, Hormonal Regulation and Sensory Control of Schooling Behavior of Fish. J. Ichthyol. 63, 1264–1272 (2023). https://doi.org/10.1134/S0032945223070056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070056

Keywords:

Navigation