Skip to main content
Log in

Cold-Resistant Steels: Structure, Properties, and Technologies

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The domestic achievements and research results in the field of the creation of low-carbon, cold-resistant, weldable steels supplied in the form of sheet metal for the shipbuilding industry—in particular, for use in the construction of icebreaker hulls, tankers, gas carriers, ice navigation vessels, and offshore stationary platforms—are reviewed. The requirements of the Russian Maritime Shipping Register for the chemical composition, assortment, and mechanical properties of cold-resistant, structural, low-carbon steels, their certification, and the current state of affairs in the development of cold-resistant steels in Russia and abroad are presented. The features and principles of the alloying and microalloying of low-carbon, cold-resistant, weldable steels of various strengths in the range from 315 to 960 MPa and the mechanisms to harden and enhance resistance to brittle fracture at low temperatures are reviewed. The requirements and technological methods for the formation of a steel structure providing the required cold resistance are formulated, the features of the cold-resistant steel structure are described in detail, and recommendations are formulated for further improvement of the properties and quality of cold-resistant steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

Notes

  1. For heavy-duty and high-strength shipbuilding steels, the following notations are applicable depending on the temperature of the samples tested for the impact bending strength: A for 0°С, D for –20°С, E for –40°С, and F for –60°С.

  2. Td is the minimum calculated operating temperature of the material, up to which the steel can be used in any structure components without restrictions.

  3. Тcb is the critical temperature of brittleness (ductile-to-brittle transition), at which at least 70% of the fibrous component is observed in the fracture of a full thickness sample with a concentrator in the form of a notch under three-point static bending before fracture.

  4. DWTT is the critical temperature of brittleness (ductile-to-brittle transition), which corresponds to 70% of the fibrous component in the fracture of a full thickness sample with a sharp notch subjected to destruction under impact loading at a speed of 5–8 m/s (test with a falling load).

  5. ZDT is the critical brittleness temperature (zero plasticity temperature) defined as the maximum temperature, at which a standard size sample breaks down with a brittle weld and a notch initiating the crack under impact loading.

  6. The anisotropy coefficient characterizes the presence and intensity of the preferable orientation of structural components [9799].

REFERENCES

  1. Yu. A. Shul’te, Cold-Resistant Steels (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  2. N. N. Davidenkov, Dynamic Strength and Brittleness of Metals (Naukova dumka, Kiev, 1981), Vol. 1 [in Russian].

    Google Scholar 

  3. E. I. Shevandin, “Method for assessing the tendency of steel to brittle fracture by means of type of fracture,” Zavod. Lab., No. 12, 1497–1512 (1959).

  4. I. A. Razov, “Brittle fractures of welded structures and their relationship with the stress state and the tendency of steel to brittleness,” in the collection Cold Resistance of Steel and Steel Structures (Nauka, Siberian Brangh, Novosibirsk, 1971) [in Russian], pp. 71–86.

  5. S. S. Kanfor, Case Steel (Sudpromgiz, Leningrad, 1960) [in Russian].

    Google Scholar 

  6. Yu. Ya. Meshkov and G. A. Pakharenko, Structure of Metal and Brittleness of Steel Products (Naukova dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  7. M. I. Gol’dshtein, V. S. Litvinov, and B. M. Bronfin, Metal Physics of High Strength Alloys (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  8. A. A. Kroshkin, Shipbuilding Hull Steels (Sudpromgiz, Leningrad, 1957) [in Russian].

    Google Scholar 

  9. A. S. Zav’yalov and I. V. Gorynin, “Steet hull steel AK-25,” Trudy TsNII 48, No. 3, 6–24 (1956).

    Google Scholar 

  10. Yu. L. Legostaev, N. I. Karchevskaya, and V. P. Kharchevnikov, “Cold resistant low alloy steel” MiTOM, No. 11, 60–62 (1987).

    Google Scholar 

  11. I. V. Gorynin, Yu. L. Legostaev, L. V. Grishchenko, and V. A. Malyshevskii, “High-strength steels for ship hulls, offshore structures and deep-sea equipment,” Progr. Mater. Tekhnol., No. 2, 23–24 (1996).

  12. M. V. Pridantsev, L. N. Davydova, and I. A. Tamarina, Structural Steels: Handbook (Metallurgiya, Moscow, 1980).

    Google Scholar 

  13. Yu. A. Shul’te, A. A. Maslov, Yu. V. Tomkin, V. P. Voronin, L. F. Kosoi, V. A. Malyshevskii, V. I. Lepekhov, O. V. Nosochenko, and N. N. Kulik, “BOF steel production with increased cold and corrosion resistance,” Stal’, No. 12, 24–27 (1988).

  14. V. A. Malyshevskii and L. V. Grishchenko, “High-strength, cold-resistant weldable steel for hulls of arctic vessels, icebreakers and floating installations,” in collection Shipbuilding Industry (TsNII “Rumb”, 1988), pp. 45–50.

  15. Yu. P. Solntsev and G. A. Stepanov, Structural Steels and Alloys for Low Termperatures (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  16. Yu. P. Solntsev and T. I. Titova, Steels for North and Siberia (Khimizdat, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  17. Yu. P. Solntsev, Cold Resistant Steels and Alloys (Khimizdat, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  18. P. D. Odesskii, I. I. Vedyakov, and V. M. Gorpinchenko, Prevention of Brittle Fracture of Metallic Building Structures (SP “Intermet Inzhiniring”, Moscow, 1998) [in Russian].

  19. V. V. Busygin, Yu. L. Legostaev, and A. V. Maslenikov, The Current State and Prospects for the Use of High Strength Steel in Foreign Shipbuilding. Review and Analytical Information (TsNII “Rumb”, 1983).

  20. W. B. Morrison, Microalloyed steels for Offshore application, Microalloying 95 Pittsburg, Ed. by N. Et Al. Korchynsky (Warrendale, 1995), pp. 105–116.

    Google Scholar 

  21. H. Tamehiro, N. Yamada, and H. Matsuda, “Effect of the thermo-mechanical control process on the properties of HSLA steels,” Trans ISIJ, No. 25, 54–61 (1985).

    Article  CAS  Google Scholar 

  22. GOST R 52927-2015, Rolled Products for Shipbuilding from Steel of Normal, Increased and High Strength. Technical Conditions (Standartinform, Moscow, 2015), p. 92 [in Russian].

  23. ND No. 2-020101-095, Rules for the Classification and Construction of Sea-Going Ships. Part XIII. Materials (Rossiiskii morskoi registr sudokhodstva, St. Petersburg, 2019), p. 201 [in Russian].

  24. ND No. 2-020201-013. Rules for the Classification, Construction and Equipment of Floating Drilling Rigs and Fixed Offshore Platforms (Rossiiskii morskoi registr sudokhodstva, St. Petersburg, 2019), p. 484 [in Russian].

  25. N. A. Tereshchenko, T. I. Tabatchikova, I. L. Yakovleva, A. N. Makovetskii, and S. V. Shander, “Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60, Phys. Met. Metallogr. 118, 707–715 (2017).

    Article  CAS  Google Scholar 

  26. Makarov, E.L., Cold Cracking of Welds of Alloyed Steels (Mashinostroenie, Moscow, 1981).

    Google Scholar 

  27. I. Grivnyak, Weldability of Steels (Mashinostroenie, Moscow, 1984) [in Russian].

    Google Scholar 

  28. V. M. Goritskii, I. A. Guseva, M. A. Lushkin, and G. R. Shneiderov, “Comparison of the anisotropy coefficients of impact toughness on Charpy samples of structural steels manufactured in accordance with European and Russian standards,” Zavod. Lab., Diagn. Mater. 79, No. 10, 78–83 (2013).

    Google Scholar 

  29. V. V. Rybin, Severe Plastic Deformaitons and Failure of Materials (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  30. V. V. Rybin, “Regularities of the formation of mesostructures in the course of developed plastic deformation,” Vopr. Materialoved., No. 1, 11–33 (2002).

  31. V. E. Panin and A. V. Panin, “Scale levels of plastic deformation and fracture of nanostructured materials,” Nanotekhnika, No. 3, 28–42 (2005).

    Google Scholar 

  32. V. E. Panin, Yu. V. Grinyaev, and V. I. Danilov, Structural Levels of Plastic Deformation and Failure (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  33. E. A. Gudremon, Special Steels (Metallurgiya, Moscow, 1960) [in Russian].

    Google Scholar 

  34. M. A. Shtremel’, A. B. Arabei, A. G. Glebov, I. Yu. Pyshmintsev, T. S. Esiev, A. I. Abakumov, “On the normalization of cold brittleness of heavy plate steel. Part II. Cold brittleness thresholds in pipe testing,” Deformatsiya i Razrushenie Materialov, No. 7, 28–39 (2017).

  35. B. Z. Margolin, A. G. Gulebko, and V. A. Shvetsova, “Prediction of the fracture toughness of reactor steels in the probability statement on the local approach. Report 1,” Prikl. Mekh. 20, No. 1, 5–20 (1999).

    Google Scholar 

  36. B. Z. Margolin, A. G. Gulebko, and V. A. Shvetsova, “Prediction of the fracture toughness of reactor steels in the probability statement on the local approach. Report 2,” Prikl. Mekh. 35, No. 4, 5–22 (1999).

    Google Scholar 

  37. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, L. Yu. Egorova, I. V. Gervas’eva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov,” Effect of thermomechanical treatment on the resistance of low-carbon low-alloy steel to brittle fracture,” Phys. Met. Metallogr. 109, No. 3, 189–199 (2010).

    Article  Google Scholar 

  38. V. N. Urtsev, A. V. Shmakov, E. D. Mokshin, N. V. Urtsev, V. L. Kornilov, M. L. Krasnov, P. A. Stekanov, S. I. Platov, I. K. Razumov, Yu. N. Gornostyrev, and V. M. Schastlivtsev “Formation of the structural state of a high-strength low-alloy steel upon hot rolling and controlled cooling,” Phys. Met. Metallogr. 120, 1233–1241 (2019).

    Article  CAS  Google Scholar 

  39. A. Yu. Churyumov and A. V. Pozdnyakov, “Modeling the evolution of the microstructure of metallic materials during hot plastic deformation and heat treatment,” Fiz. Met. Metalloved. 121, 1162–1186 (2020).

    Google Scholar 

  40. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Klyueva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Microstructure and properties of low-carbon weld steel after thermomechanical strengthening,” Phys. Met. Metallogr. 113, No. 5, 480–488 (2012).

    Article  Google Scholar 

  41. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. I. Reina Del’gado, S. A. Golosienko, U. A. Pazilova, and E. I. Khlusova, “Effect of thermomechanical treatment on the resistance of low-carbon low-alloy steel to brittle fracture,” Phys. Met. Metallogr. 16, No. 2, 189–199 (2015).

    Article  Google Scholar 

  42. S. Yu. Nastich and M. Yu. Matrosov, “Structure formation of high-strength pipe steels during thermomechanical treatment,” Metallurg, No. 9, 46–54 (2015).

    Google Scholar 

  43. I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, “Alloying principles, phase transformations, structure and properties of low-temperature weldable,” Met. Sci. Heat Treat. 49, 3–9 (2007).

    Article  CAS  Google Scholar 

  44. I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, “Cold-resistant steels for technical means of arctic shelf development,” Vopr. Materialoved., No. 3, 108–126 (2009).

  45. V. V. Orlov, “Correlation of structure parameters and performance characteristics of alloy steels for shipbuilding,” Vopr. Materialoved., No. 2(66), 5–17 (2011).

  46. V. A. Kozvonin, A. A. Shatsov, I. V. Ryaposov, M. G. Zakirova, K. N. Generalova, “Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels,” Phys. Met. Metallogr. 117, 834–842 (2016).

    Article  CAS  Google Scholar 

  47. V. V. Rybin, V. A. Malyshevskii, and E. I. Khlusova, High Strength Weldable Tempered Steels (Polytechnic University, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  48. V. K. Grigorovich, Electronic State and Thermodynamics of Iron Alloys (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  49. V. Yum-Rozeri, Atomic Theory for Metallurgists (Metallurgizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  50. V. E. Panin, L. S. Derevyagina, N. M. Lemeshev, A. V. Korznikov, A. V. Panin, and M. S. Kazachenok, “On the nature of low-temperature brittleness of BCC steels,” Phys. Mesomech. 16, No. 6, 5–12 (2013).

    CAS  Google Scholar 

  51. V. I. Sarrak and R. I. Entin, “On the influence of the processes of interaction of dislocations with interstitial atoms on the brittle fracture of iron,” in Physical Nature of Brittle Fracture of Metals (Naukova dumka, Kiev, 1965), pp. 120–124 [in Russian].

    Google Scholar 

  52. Copper in Ferrous Metals. Collection of Articles, Ed. by I. Le Mei and L. M.-D. Shetki (Metallurgiya, Moscow, 1988) [in Russian].

    Google Scholar 

  53. P. D. Odesskii and L. A. Smirnov, “On the use of vanadium and niobium in microalloyed steels for metal structures,” Stal’, No. 6, 116−123 (2005).

  54. A. I. Fernandez, P. Uranga, B. Lopez, and J. M. Rodrigues-Ibabe, “Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti microalloyed steels,” Mater. Sci. Eng., A 361, 367–376 (2003).

    Article  CAS  Google Scholar 

  55. T. V. Soshina, A. A. Zisman, and E. I. Khlusova, “Influence of microalloying with niobium on recrystallization processes in austenite of low-carbon alloy steels,” Vopr. Materialoved., No. 1, 31–36 (2013).

  56. I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, No. 11, 1127–1134 (2015).

    Article  Google Scholar 

  57. I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the evolution of carbonitride particles of complex composition upon hot deformation of a low-alloyed steel,” Phys. Met. Metallogr. 119, 770–779 (2018).

    Article  CAS  Google Scholar 

  58. J. A. Wilson, A. J. Craven, Y. Li, and T. N. Baker, “Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2—Chemical characterisation of dispersion strengthening precipitates,” Mater. Sci. Technol. 23, 519–527 (2007). https://doi.org/10.1179/17432807X161330

  59. I. N. Golikov, M. I. Gol’dshtein, and I. I. Murzin, Vanadium in Steel (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

  60. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low-alloy low-carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, No. 1, 69–76 (2014).

    Article  Google Scholar 

  61. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, No. 4, 356–366 (2015).

    Article  CAS  Google Scholar 

  62. N. V. Malakhov, G. D. Motovilina, E. I. Khlusova, and A. A. Kazakov, “Structural heterogeneity and methods of its reduction to improve the quality of structural steels,” Vopr. Materialoved., No. 3, 52–64 (2009).

  63. V. M. Farber, V. A. Khotinov, S. V. Belikov, O. V. Selivanova, N. V. Lezhnin, A. N. Morozova, M. S. Karabanalov, and A. Yu. Zhilyakov, “Separations in steels subjected to controlled rolling, followed by accelerated cooling,” Phys. Met. Metallogr. 117, No. 4, 407–421 (2016).

    Article  CAS  Google Scholar 

  64. I. Yu. Pyshmintsev, A. B. Arabei, V. M. Farber, V. A. Khotinov, and N. V. Lezhnin, “ Laboratory criteria of crack resistance of high-strength steels for gas main pipelines,” Phys. Met. Metallogr. 113, No. 4, 411–417 (2012).

    Article  Google Scholar 

  65. E. V. Nesterova, N. Yu. Zolotorevskii, Yu. F. Titovets, and E. I. Khlusova, “Inheritance of misorientations and a model of the formation of the bainite structure in low-carbon steels under the influence of austenite deformation,” Vopr. Materialoved., No. 4, 17–26 (2011).

  66. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Klyueva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Effect of austenite-decomposition temperature on bainite morphology and properties of low-carbon steel after thermomechanical treatment,” Phys. Met. Metallogr. 114, No. 5, 419–429 (2013).

    Article  Google Scholar 

  67. I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557 (2018).

    Article  CAS  Google Scholar 

  68. M. A. Smirnov, I. Yu. Pyshmintsev, O. V. Varnak, and A. N. Mal’tseva, “Effect of high-temperature thermomechanical treatment on the brittle fracture of low-carbon steel,” Phys. Met. Metallogr. 119, 191–196 (2018).

    Article  CAS  Google Scholar 

  69. G. E. Kodzhaspirov, E. I. Khlusova, and V. V. Orlov, “Physical modeling of thermomechanical processing processes and structure control of structural steel,” Vopr. Materialoved., No. 3, 65–84 (2009).

  70. M. Yu. Matrosov, L. I. Efron, A. A. Kichkina, and I. V. Lyasotskii, “A study of the microstructure of niobium-microalloyed pipe steel after different modes of controlled rolling with accelerated cooling,” Met. Sci. Heat Treat. 50, 136−141 (2008).

    Article  CAS  Google Scholar 

  71. O. V. Sych, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Structure and properties of 10G2FB steel after hot plastic deformation”, Stal’, No. 1, 56–62 (2013).

  72. E. I. Khlusova, A. A. Zisman, and T. V. Soshina, “Construction and use of maps of structural changes during hot deformation of austenite of low-carbon steel 09KhN2MDF for optimization of industrial technologies,” Vopr. Materialoved., No. 1, 37–48 (2013).

  73. O. V. Sych, E. I. Khlusova, V. V. Orlov, and A. A. Kruglova, “Improvement of the chemical composition and technological modes of production of strip K65–K70 (X80–X90) based on simulation,” Metallurg, No. 2, 50–58 (2013).

    Google Scholar 

  74. U. A. Pazilova, E. I. Khlusova, and T. V. Knyazyuk, “Influence of modes of hot plastic deformation during quenching from rolling heating on the structure and properties of economically alloyed high-strength steel,” Vopr. Materialoved., No. 3, 7–19 (2017).

  75. S. V. Korotovskaya, V. V. Orlov, and E. I. Khlusova, “Management of the processes of structure formation during thermomechanical treatment of shipbuilding and pipe steels of unified chemical composition,” Metallurg, No. 5, 71–78 (2014).

    Google Scholar 

  76. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

  77. G. E. Kodzhaspirov, A. I. Rudskoi, and V. V. Rybin, Physical Foundations and Resource-Saving Technologies for the Manufacture of Products by Plastic Deformation (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  78. F. Khasterkamp, K. Khulka, Yu. I. Matrosov, Yu. D. Morozov, L. I. Efron, V. I. Stolyarov, and O. N. Chevskaya, Niobium Containing Low Alloyed Steels (SP Intermet Inzhiniring, Moscow, 1999) [in Russian].

    Google Scholar 

  79. V. V. Rybin, A. S. Rubtsov, and G. E. Kodzhaspirov, “Structural transformations in steel during rolling with varying degrees and fractional deformation,” Phys. Met. Metallogr. 58, No. 4, 774–781 (1984).

    CAS  Google Scholar 

  80. E. L. Brown and A. J. De Ardo, “On the origin of equiaxed austenite grains that result from the hot rolling of steel,” Metall. Trans. A 12, 39–47 (1981).

    Article  CAS  Google Scholar 

  81. J. G. Bianchi and L. P. Karialainen, “Modelling of dynamic and metadynamic recrystallization during bar rolling of a medium carbon spring steel,” J. Mater. Process. Technol., No. 160, 267–277 (2005).

  82. M. Olasolo, P. Uranga, J. M. Rodriguez-Ibabe, and B. Lypez, “Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel,” Mater. Sci. Eng., A 528, 2559–2569 (2011).

    Article  CAS  Google Scholar 

  83. C. L. Miao, C. J. Shang, G. D. Zhang, and S. V. Subramanian, “Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling,” Mater. Sci. Eng., A 527, 4985–4992 (2010).

    Article  CAS  Google Scholar 

  84. B. Pereda, A. I. Fernandez, and B. Lopez, “Effect of Mo on dynamic recrystallization behavior on Nb–Mo micro-alloyed steels,” ISIJ Int. 47, No. 6, 860–868 (2007).

    Article  CAS  Google Scholar 

  85. P. D. Hodgson, S. H. Zahiri, and J. J. Whale, The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel, ISIJ International. 44, No. 7, 1224–1229 (2004.

    Article  CAS  Google Scholar 

  86. A. Dehgan-Manshadi, M. Barnett, and P. Hodgson, “Hot deformation and recrystallization of austenitic stainless steel: Part 1. Dynamic recrystallization,” Metall. Mater. Trans. A 39, 1359–1370 (2008).

    Article  CAS  Google Scholar 

  87. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, “Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels,” ISIJ Int. 45, No. 1, 91–94 (2005).

    Article  CAS  Google Scholar 

  88. A. A. Zisman, E. I. Khlusova, and T. V. Soshina, “Studies of austenite recrystallization in hot rolled steel 09KhN2MD by stress relaxation,” Vopr. Materialoved., No. 2, 16–28 (2012).

  89. A. V. Chastukhin, D. A. Ringinen, G. E. Khadeev, and L. I. Efron, “Kinetics of austenite static recrystallization of Nb-microalloyed pipe steels,” Metallurg, No. 12, 33–38 (2015).

    Google Scholar 

  90. A. V. Chastukhin, D. A. Ringinen, L. I. Efron, D. S. Astaf’ev, and S. V. Golovin, “Development of models of austenite structuration for improvements to the strategy of pipe steels hot rolling,” Problemy Chernoi Metallurgii i Materialovedeniya, No. 3, 39–53 (2016).

    Google Scholar 

  91. S. Lacroix, Y. Bréchet, and M. Véron, “Influence of deformation on austenite to ferrite transformation in low carbon steels: experimental approach and modeling” / in Austenite Formation and Decomposition, Ed. by. E. B. Damm and M. Merwin (ISS/TMS, Warrendale, 2003).

    Google Scholar 

  92. D. N. Hanlon, J. Sietsma, and S. van der Zwaag, “The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation,” ISIJ Int. 9, 1028−1036 (2001).

    Article  Google Scholar 

  93. I. V. Gorynin, V. V. Rybin, V. A. Malyshevskii, E. I. Khlusova, E. V. Nesterova, V. V. Orlov, and G. Yu. Kalinin, “Economically alloyed steels with nano-modified structure intended for operation in extreme conditions,” Vopr. Materialoved., No. 2(54), 7–19 (2008).

  94. O. V. Sych, M. V. Golubeva, and E. I. Khlusova, “Development of cold-resistant weldable steel with strength of 690 MPa for heavy-loaded equipment exploited in arctic conditions,” Tyazh. Mashinostr., No. 4, 17–25 (2018).

  95. O. V. Sych, A. A. Kruglova, V. M. Schastlivtsev, T. I. Tabatchikova, and I. L. Yakovleva, “Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure,” Phys. Met. Metallogr. 117, No. 12, 1270–1280 (2016).

    Article  CAS  Google Scholar 

  96. O. V. Sych, “Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure,” Vopr. Materialoved., No. 4, 14–41 (2018).

  97. A. A. Kazakov and D. V. Kiselev, “Modern methods for assessing the quality of the structure of metals based on panoramic studies using the Thixomet image analyzer,” Persp. Mater. Tutorial. (Togliatti State University, Togliatti, 2013).

  98. A. Kazakov., D. Kiselev and O. Pakhomova, “Quantitative description of microstructure for structure-property relationships of pipeline plate steel,” CIS Iron Steel Rev., No. 1, 4–12 (2012).

  99. A. A. Kazakov and D. V. Kiselev, “Industrial application of Thixomet image analyzer for quantitative description of steel and alloys microstructure,” Metallogr., Microstruct., Anal. 5, No. 4, 294–301 (2016).

    CAS  Google Scholar 

  100. N. Takayama, G. Miyamoto, and T. Furuhara, “Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel,” Acta Mater. 60, 2387–2396 (2012).

    Article  CAS  Google Scholar 

  101. A. A. Zisman, N. Yu. Zolotorevskii, S. N. Petrov, E. I. Khlusova, and E. A. Yashina, “Panoramic crystallographic analysis of structure evolution in low-carbon martensitic steel under tempering,” Met. Sci. Heat Treat. Met. 60, 142–149 (2018).

    Article  CAS  Google Scholar 

  102. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Quantitative analysis of variant selection in ausformed lath martensite,” Acta Mater. 60, 1139–1148 (2012).

    Article  CAS  Google Scholar 

  103. O. P. Talanov, S. Yu. Nastich, V. N. Nikitin, S. V. Denisov, O. P. Shiryaev, E. A. Kudryakov, D. I. Bogach, A. I. Traino, and V. S. Kurash, “Mastering the production of high-strength wear-resistant weldable steel with a yield point of more than 950 N/mm2 for load-bearing metal structures,” Metallurg, No. 10, 62–66 (2013).

    Google Scholar 

  104. O. V. Sych, “Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315-750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure,”, No. 3, 22–47 (2018).

  105. O. V. Sych and E. I. Khlusova, “Steels for Artcics,” Neftegaz.RU, No. 5, 50–55 (2020).

    Google Scholar 

  106. A. Lambert-Perlade, A. F. Gourgues, and J. Besson, “Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel,” Metall. Mater. Trans. A. 35, 1039–1053 (2004).

    Article  Google Scholar 

  107. Z. Guo, C. S. Lee, and J. W. Morris, Jr., “On coherent transformations in steel,” Acta Mater. 52, 5511–5518 (2004).

    Article  CAS  Google Scholar 

  108. H. Byounchul, G. L. Chang, and K. Sung-Joon, “Low-temperature toughening mechanism in termomechanically processed high-strength low-alloy steels,” Metall. Mater. Trans. A 42, 717–728 (2011).

    Article  CAS  Google Scholar 

  109. N. Yu. Zolotorevskii, A. A. Zisman, S. N. Panpurin, Yu. F. Titovets, S. A. Golosienko, E. I. Khlusova, “Effect of the grain size and deformation substructure of austenite on the crystal geometry of bainite and martensite in low-carbon steels,” Met. Sci. Heat Trea.t Met., No. 10, 39–48 (2013).

  110. V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Structure of martensite packets in engineering steels”, Fiz. Met. Metalloved. 66, 759–768 (1988).

    Google Scholar 

  111. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater. 54, 5323–5331 (2006).

    Article  CAS  Google Scholar 

  112. A. A. Zisman, S. N. Petrov, and A. V. Ptashnik, “Quantitative certification of bainite-martensitic structures of high-strength alloy steels by scanning electron microscopy,” Metallurg, No. 11, 91–95 (2014).

    Google Scholar 

  113. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, “Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique,” Mater. Sci. Eng., A 447, 285–297 (2007).

    Article  CAS  Google Scholar 

  114. S. I. Wright, M. M. Nowell, and D. P. Field, “A review of strain analysis using electron backscatter diffraction,” Microsc. Microanal. 17, 316–329 (2011).

    Article  CAS  Google Scholar 

  115. O. V. Sych, E. I. Khlusova, U. A. Pazilova, and E. A. Yashina, “The structure and properties of the heat-affected zone of low-alloy cold-resistant steels for arctic applications,” Vopr. Materialoved., No. 2(94), 30–51 (2018).

  116. O. V. Sych, M. V. Golubeva, and E. I. Khlusova, “Investigation of the structure and properties of welded joints made of high-strength cold-resistant steel grade 09KhGN2MD, obtained by electric arc and laser welding,” Tyazh. Mashinostr., No. 7–8, 23–32 (2018).

  117. E. I. Khlusova and V. V. Orlov, “Changes in the structure and properties in the heat-affected zone of welded joints made of low-carbon shipbuilding and pipe steels,” Metallurg, No. 9, 63–76 (2012).

    Google Scholar 

  118. E. A. Goli-Oglu, “Influence of heat treatment after welding on the microhardness of steel joints in marine platforms,” Steel Transl. 46, No. 5, 361–363 (2016).

    Article  Google Scholar 

  119. U. A. Pazilova, A. V. Il’in, A. A. Kruglova, G. D. Motovilina, and E. I. Khlusova, “Influence of the temperature and strain rate on the structure and fracture mode of high-strength steels upon the simulation of the thermal cycle of welding and post-welding tempering,” Phys. Met. Metallogr. 116, No. 6,1–10 (2015).

    Article  Google Scholar 

  120. V. A. Kostin, G. M. Grigorenko, V. D. Poznyakov, S. L. Zhdanov, T. G. Solomiichuk, T. A. Zuber, and A. A. Maksimenko, “Influence of the thermal cycle of welding on the structure and properties of microalloyed structural steels,” Avtom. Svarka, No. 12, 10–16 (2012).

    Google Scholar 

  121. V. A. Karkhin, Thermal Processes during Welding (Polytechnic University, 2013).

    Google Scholar 

  122. S. G. Lee, D. H. Lee, S. S. Sohn, W. G. Kim, K.‑K. Um, K.-S. Kim, and S. Lee, “Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low alloy (HSLA) steels,” Mater. Sci. Eng., A, No. 697, 55–65 (2017).

  123. H. K. D. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties (Elsevier, Oxford, 2006).

    Google Scholar 

  124. Y. Komizo and Y. Fukada, “CTOD properties and M‑A constituent in the HAZ of C-Mn microalloyed steel,” Quarterly J. Japan Weld. Soc. 6, No. 1, 41–46 (1988).

    Article  CAS  Google Scholar 

  125. R. Cao, J. Li, D. S. Liu, J. Y. Ma, and J. H. Chen, “Micromechanism of decrease of Impact Toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input,” Metall. Mater. Trans. A 46, No. 7, 2999–3014 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Khlusova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlusova, E.I., Sych, O.V. & Orlov, V.V. Cold-Resistant Steels: Structure, Properties, and Technologies. Phys. Metals Metallogr. 122, 579–613 (2021). https://doi.org/10.1134/S0031918X21060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060041

Keywords:

Navigation