Skip to main content
Log in

Effect of stresses on the structural changes in high-chromium steel upon creep

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of stresses on the microstructure and dispersed particles in a heating-performance Fe‒0.12C–0.06Si–0.04Ni–0.2Mn–9.5Cr–3.2Co–0.45Mo–3.1W–0.2V–0.06Nb–0.005B–0.05N (wt %) steel has been studied under long-term strength tests at Т = 650°C under initial applied stresses ranging from 220 to 100 MPa with a step of 20 MPa. Under an applied stress of 160 MPa, which corresponds to a time to fracture of 1703 h, a transfer from short- to long-term creep takes place. It has been shown that alloying with 3% Co and an increase in W content to 3% significantly increase the short-term creep resistance and slightly increase the long-term strength upon tests by more than 104 h. The transfer from short- to the long-term creep is accompanied by substantial changes in the microstructure of the steel. Under long-term creep, the solid solution became depleted of tungsten and of molybdenum down to the thermodynamically equilibrium content of these elements in the solid solution, which leads to the precipitation of a large amount of fine particles of the Laves phase at the boundaries of laths and prior austenitic grains. At a time to fracture of more than 4 × 103 h, the coalescence of the M23С6 carbides and Laves-phase particles occurs, which causes the transformation of the structure of fine tempered martensite lath structure into a subgrained structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Abe, T.-U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead Publishing in Materials, 2008).

    Book  Google Scholar 

  2. R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met.Metallogr. 109, 186–200 (2010).

    Article  Google Scholar 

  3. F. Abe, “Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructure evolution,” Mater. Sci. Eng., A 510–511, 64–69 (2010).

    Google Scholar 

  4. N. Dudova, A. Plotnikova, D. Molodov, A. N. Belyakov, and R. O. Kaibyshev, “Structural changes of tempered martensitic 9% Cr–2% W–3% Co steel during creep at 650°C,” Mater. Sci. Eng., A 534, 632–639 (2012).

    Article  Google Scholar 

  5. V. A. Dudko, A. N. Belyakov, D. Molodov, and R. O. Kaibyshev, “Microstructure evolution and pinning of boundaries by precipitates in a 9pct Cr heat resistant steel during creep,” Metall. Mater. Trans. A 44, S162–S172 (2013).

    Article  Google Scholar 

  6. A. Y. Kipelova, R. O. Kaibyshev, A. N. Belyakov, and D. Molodov, “Microstructure evolution in a 3% Co modified P911 heat resistant steel under tempering and creep condition,” Mater. Sci. Eng., A 528, 1280–1286 (2011).

    Article  Google Scholar 

  7. H. Ghassemi-Armaki, R. P. Chen, K. Maruyama, and M. Igarashi, “Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels,” J. Nucl. Mater. 433, 23–29 (2013).

    Article  Google Scholar 

  8. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in lowcarbon steel,” Acta Mater. 54, 1279–1288 (2006).

    Article  Google Scholar 

  9. A. Y. Kipelova, A. N. Belyakov, R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “Tempering-induced structural changes in steel 10Kh9K3V1MFBR and their effect on the mechanical properties,” Metal Sci. Heat Treat. 52, 100–110 (2010).

    Article  Google Scholar 

  10. I. Fedorova, A. Kostka, E. Tkachev, A. N. Belyakov, and R. O. Kaibyshev, “Tempering behavior of a lownitrogen boron-added 9% Cr steel,” Mater. Sci. Eng., A 662, 443–455 (2016).

    Article  Google Scholar 

  11. K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura, “Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int. 43, 1089–1094 (2003).

    Article  Google Scholar 

  12. I. I. Gorbachev, V. V. Popov, and A. Y. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).

    Article  Google Scholar 

  13. A. Y. Kipelova, M. Odnobokova, A. N. Belyakov, and R. O. Kaibyshev, “Effect of Co on creep behavior of a P911 steel,” Metall. Mater. Trans. A 44, 577–583 (2012).

    Article  Google Scholar 

  14. L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, “Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants,” Mater. Sci. Eng., A 510–511, 88–94 (2009).

    Article  Google Scholar 

  15. A. Fedoseeva, N. Dudova, and R. O. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016).

    Article  Google Scholar 

  16. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, Phys. Met. Metallogr. 114, 741–751 (2013).

    Article  Google Scholar 

  17. V. A. Dudko, A. N. Belyakov, and R. O. Kaibyshev, “Sources of high creep resistance of modern high-chromium martensitic steels,” Dokl. Phys. Chem. 464, 191–193 (2015).

    Article  Google Scholar 

  18. A. Fedoseeva, N. Dudova, and R. O. Kaibyshev, “Effect of tungsten on a dispersion of M(C,N) carbonitrides in 9% Cr steels under creep conditions,” Trans. Indian Inst. Met. 69, 211–215 (2016).

    Article  Google Scholar 

  19. A. Y. Kipelova, A. N. Belyakov, and R. O. Kaibyshev, “Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K,” Mater. Sci. Eng., A 532, 71–77 (2012).

    Article  Google Scholar 

  20. I. Fedorova, A. N. Belyakov, P. Kozlov, V. N. Skorobogatykh, I. A. Shenkova, and R. O. Kaibyshev, “Lavesphase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K,” Mater. Sci. Eng., A 615, 153–163 (2014).

    Article  Google Scholar 

  21. A. Fedoseeva, N. Dudova, U. Glatzel, and R. O. Kaibyshev, “Effect of W on tempering behavior of a 3% Co modified P92 steel,” J. Mater. Sci. 51, 424–439 2016. doi 10.1007/s10853-016-0188-x

    Article  Google Scholar 

  22. N. Dudova and R. O. Kaibyshev, “On the precipitation sequence in a 10% Cr steel under tempering,” ISIJ Int. 51, 826–831 (2011).

    Article  Google Scholar 

  23. F. Abe, “Creep behavior, deformation mechanisms and creep life of modified 9Cr–1Mo steel,” Metall. Mater. Trans. A 46, 5610–5625 (2015).

    Article  Google Scholar 

  24. B. Wilshire and P. Scharning, “Prediction of long term creep data for forged 1Cr–1Mo–0.25V steel,” Mater. Sci. Technol. 24, 1–9 (2008).

    Article  Google Scholar 

  25. V. A. Dudko, A. N. Belyakov, and R. O. Kaibyshev, “Origin of threshold stresses in a P92-type steel,” Trans. Indian Inst. Metals 69, 223–227 (2016).

    Article  Google Scholar 

  26. L. Cipolla, H. K. Danielsen, D. Venditti, P. E. di Nunzio, J. Hald, and M. A. Somers, “Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel,” Acta Mater. 58, 669–679 (2010).

    Article  Google Scholar 

  27. H. K. Danielsen, P. E. di Nunzio, and J. Hald, “Kinetics of Z-phase precipitation in 9 to 12 pct Cr steels,” Metall. Mater. Trans. 44, 2445–2452 (2013).

    Article  Google Scholar 

  28. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “Formation of the Z-phase and prospects of martensitic steels with 11% Cr for operation above 590°C,” Metal Sci. Heat Treat. 52, 90–99 (2010).

    Article  Google Scholar 

  29. F. Abe, “Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr–W steels,” Metall. Mater. Trans. A 36, 321–332 (2005).

    Article  Google Scholar 

  30. A. Schneider and G. Inden, “Simulation of the kinetics of precipitation reactions in ferritic steels,” Acta Mater. 53, 519–531 (2005).

    Article  Google Scholar 

  31. A. Y. Kipelova, A. N. Belyakov, and R. O. Kaibyshev, “The crystallography of M23C6 carbides in a martensitic 9% Cr steel after tempering, aging and creep,” Philos. Mag. 93, 2259–2268 (2013).

    Article  Google Scholar 

  32. O. Prat, J. Garcia, D. Rojas, C. Carrasco, and G. Inden, “Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations,” Acta Mater. 58, 6142–6153 (2010).

    Article  Google Scholar 

  33. L. Korcakova, J. Hald, and M. A. J. Somers, “Quantification of Laves phase particle size in 9CrW steel,” Mater. Character. 47, 111–117 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Fedoseeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, A.E., Dudova, N.R. & Kaibyshev, R.O. Effect of stresses on the structural changes in high-chromium steel upon creep. Phys. Metals Metallogr. 118, 591–600 (2017). https://doi.org/10.1134/S0031918X17040032

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17040032

Keywords

Navigation