Skip to main content
Log in

Influence of the carbon content on the phase composition and mechanical properties of P92-type steel

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The deformation behavior and the microstructure evolution under the creep of 10Kh9V2MFBR steel (Russian analog of the P92 steel) (in wt %, Fe–8.9% Cr–0.05% Si–0.2% Mn–1.9% W–0.5% Mo–0.25% V–0.07Nb–0.08% N–0.01% B) with the standard (0.1%) and lowered (0.018%) carbon contents have been investigated. After the heat treatment, which included normalizing at 1050°C and tempering at 720–750°C, carbides M 23 C 6 and carbonitrides M(C,N) are formed in the 10Kh9V2MFBR steel, while in the 02Kh9V2MFBR steel (modified P92 steel), carbides M 23 C 6, nitrides M 2N, and carbonitrides M(C,N) as well as δ-ferrite (23%) were found. The measurements of hardness and tensile tests at room and elevated temper-atures did not reveal substantial distinctions in the short-term mechanical properties of both steels. The hardness of steels after tempering was 220 HB. At the same time, the creep characteristics of the steels were found to be different. A decrease in the carbon content leads to an increase in the long-term creep strength and creep limit at 650°C for short-term tests with time-to-fracture shorter than 103 h. The time to fracture of steels with various carbon contents is almost the same in long-term creep tests. Factor responsible for such effect of carbon on the creep strength are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creep-Resistant Steels, Ef. by F. Abe, T.-U. Kern, and R. Viswanathan (Woodhead, Cambridge, 2008).

  2. R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for thermal power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).

    Article  Google Scholar 

  3. A. Kostka, K. Tak, R. J. Hellmig, Y. Estrin, and G. Eggeler, “On the contribution of carbides and ultra-fine boundaries to the creep strength of tempered martensitic ferritic steels,” Acta Mater. 55, 539–550 (2007).

    Article  Google Scholar 

  4. N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, and R. Kaibyshev, “Structural changes of tempered martensitic 9% Cr–2% W–3% Co steel during creep at 650°C,” Mater. Sci. Eng., A 534, 632–639 (2012).

    Article  Google Scholar 

  5. V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev, “Microstructure evolution and pinning of boundaries by precipitates in a 9 pct. Cr heat resistant steel during creep,” Metall. Mater. Trans. A 44, 162–172 (2013).

    Article  Google Scholar 

  6. I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, and R. Kaibyshev, “Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K,” Mater. Sci. Eng., A 615, 153–163 (2014).

    Article  Google Scholar 

  7. R. Agamennone, W. Blum, C. Gupta, and J. K. Chakravartty, “Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12% Cr–2% W–5% Co steels,” Acta Mater. 54, 3003–3014 (2006).

    Article  Google Scholar 

  8. G. H. Armaki, R. Chen, K. Maruyama, and M. Igarashi, “Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels,” Metall. Mater. Trans. A 42, 3084–3094 (2011).

    Article  Google Scholar 

  9. F. Abe, “Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructure evolution,” Mater. Sci. Eng., A 510–511, 64–69 (2009).

    Article  Google Scholar 

  10. K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura, “Two-phase separation of primary MX carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int. 43, 1089–1094 (2003).

    Article  Google Scholar 

  11. A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Temperinginduced structural changes in steel 10Kh9K3V1M1FBR and their effect on mechanical properties,” Met. Sci. Heat. Treat. 52, 100–110 (2010).

    Article  Google Scholar 

  12. M. Taneike, K. Sawada, and F. Abe, “Effect of carbon concentration on precipitation behavior of M 23 C 6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment,” Metall. Mater. Trans. A 35, 1255–1262 (2004).

    Article  Google Scholar 

  13. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Atlanta, GA, 2004)

    Google Scholar 

  14. M. Taneike, F. Abe, and K. Sawada, “Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions,” Nature 424, 294–296 (2007).

    Article  Google Scholar 

  15. F. Abe, M. Taneike, and K. Sawada, “Alloy design of creep resistant 9Cr steel using a dispersion of nanosized carbonitrides,” Int. J. Press. Vess. Pip. 84, 3–12 (2007).

    Article  Google Scholar 

  16. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic modeling of carbonitride formation in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).

    Article  Google Scholar 

  17. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nband Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).

    Article  Google Scholar 

  18. I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, “Microstructure evolution in an advanced 9 Pct Cr martensitic steel during creep at 923 K (650°C),” Metall. Mater. Trans. A 44, 128–135 (2013).

    Article  Google Scholar 

  19. F.-S. Yin and W.-S. Jung, “Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant steels,” Metall. Mater. Trans. A 40, 302–309 (2009).

    Article  Google Scholar 

  20. F.-S. Yin, L.-Q. Tian, B. Xue, X.-B. Jiang, and L. Zhou, “Effect of carbon content on microstructure and mechanical properties of 9 to 12 Pct Cr ferritic/martensitic heat-resistant steels,” Metall. Mater. Trans. A 43, 2203–2209 (2012).

    Article  Google Scholar 

  21. L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe, “Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants,” Mater. Sci. Eng., A 510–511, 88–94 (2009).

    Article  Google Scholar 

  22. A. Kipelova, M. Odnobokova, A. Belyakov, and R. Kaibyshev, “Effect of Co on creep behavior of a P911 steel,” Metall. Mater. Trans. A 44, 577–583 (2013).

    Article  Google Scholar 

  23. Sh. Wang, L. Chang, D. Lin, X. Chen, and X. Huih, “High temperature strengthening in 12Cr–W–Mo steels by controlling the formation of delta ferrite,” Metall. Mater. Trans. A 45, 4371–4385 (2014).

    Article  Google Scholar 

  24. W. Yan, P. Hu, L. Deng, W. Wang, W. Sha, Y. Shan, and K. Yang, “Effect of carbon reduction on the toughness of 9CrWVTaN steels,” Metall. Mater. Trans. A 43, 1921–1933 (2012).

    Article  Google Scholar 

  25. S. A. Saltykov, Stereometric Metallography (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  26. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in lowcarbon steel,” Acta Mater. 54, 1279–1288 (2006).

    Article  Google Scholar 

  27. D. Richardot, J.-C. Vaillant, A. Arbab, and W. Bendick, The T92/P92 book (Vallourec and Mannesmann Tubes, Boulogne, 2000).

    Google Scholar 

  28. R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “Formation of Z-phase and prospects of application of martensitic steels with 11% Cr for operation above 590°C,” Met. Sci. Heat. Treat. 52, 90–99 (2010).

    Article  Google Scholar 

  29. K. Sawada, H. Kushima, M. Tabuchi, and K. Kimura, “Microstructural degradation of Gr.91 steel during creep under low stress,” Mater. Sci. Eng., A 528, 5511–5518 (2011).

    Article  Google Scholar 

  30. K. Kimura, K. Sawada, H. Kushima, and K. Kuba, “Effect of stress on creep deformation of ASME grade P92/T92 steels,” Int. J. Mater. Res. 99, 395–401 (2008).

    Article  Google Scholar 

  31. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, “Dynamic recrystallization mechanisms operating in a Ni–20% Cr alloy under hot-to-warm working,” Acta Mater. 58, 3624–3632 (2010).

    Article  Google Scholar 

  32. L. Cipolla, H. K. Danielsen, D. Venditti, P. E. Di. Nunzio, J. Hald, and M. A. J. Somers, “Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel,” Acta Mater. 58, 669–679 (2010).

    Article  Google Scholar 

  33. H. K. Danielsen, P. E. Di. Nunzio, and J. Hald, “Kinetics of Z-phase precipitation in 9 to 12 pct Cr steels,” Metall. Mater. Trans. A 44, 2445–2452 (2013).

    Article  Google Scholar 

  34. A. E. Fedoseeva, P. A. Kozlov, V. A. Dudko, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, Microstructural changes in 10Kh9V2MFBR steel at creep during 40000 hours at 600°C,” Phys. Met. Metallogr. (in press).

  35. M. Yoshizawa and M. Igarashi, “Long-term creep deformation characteristics of advanced ferritic steels for USC power plants,” Int. J. Press. Vess. Pip. 84, 37–43 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dudko.

Additional information

Original Russian Text © V.A. Dudko, A.E. Fedoseeva, A.N. Belyakov, R.O. Kaibyshev, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 11, pp. 1222–1232.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudko, V.A., Fedoseeva, A.E., Belyakov, A.N. et al. Influence of the carbon content on the phase composition and mechanical properties of P92-type steel. Phys. Metals Metallogr. 116, 1165–1174 (2015). https://doi.org/10.1134/S0031918X15110058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15110058

Keywords

Navigation