Skip to main content
Log in

Mechanical alloying and severe plastic deformation of nanocrystalline high-nitrogen stainless steels

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

High-nitrogen, nickel-free nanocrystalline stainless steels with Fe-(18–20)Cr-1N and Fe-(23–25)Cr-(10–11)Mn-1N (wt %) compositions were obtained by mechanical alloying (MA) in a high-energy planetary ball mill in an argon atmosphere. As a source of nitrogen, we used chromium and manganese nitrides that enter the composition of the powder mixture with pure metal components. Comparative studies of the evolution of the structure during MA using X-ray diffraction, Mössbauer spectroscopy, and transmission and scanning electron microscopy have demonstrated that, in an Fe-Cr-N system, a ferrite bcc structure is preserved for up to 120 h of MA. In an Fe-Cr-Mn-N system, where nitrogen was supplied by chromium nitrides, complete austenization occurred after 60 h of the MA. The maximum acceleration of the formation kinetics of a high-nitrogen austenite was obtained in an Fe-Cr-Mn-N system, where nitrogen was obtained from a manganese nitride. The mechanisms of solid-phase reactions in powder mixtures during MA are discussed under both the deformation-induced dissolution of nitrides in a metallic matrix and the stability of a nitrogen-supersaturated ferrite with respect to α → γ transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Shpaidel’, “New Nitrogen-Containing Austenite Steels with High Hardness and Plasticity,” Metalloved. Term. Obrab. Met., No. 11, 9–13 (2005).

  2. S. P. Efimenko, A. E. Shelest, E. M. Leshchinskaya, B. P. Markov, M. M. Perkas, and E. G. Mishina, “Nickel-Free Nitrogen-Containing Stainless Steels: Promising Materials for Medical and Domestic Applications,” Perspekt. Mater., No. 5, 56–59 (2001).

  3. V. G. Gavriljuk, “Nitrogen in Iron and Steel,” ISIJ Int. 36, 738–745 (1996).

    Article  CAS  Google Scholar 

  4. O. A. Bannykh, V. M. Blinov, and M. V. Kostina, “About Relationship between Wear Resistance and Phase Composition and Mechanical Properties of New High-Nitrogen Iron-Chromium Alloys,” Metally, No. 2, 57–64 (2000).

  5. K. Yang and Y. Ren, “Nickel-Free Austenitic Stainless Steels for Medical Applications,” Sci. Technol. Adv. Mater. 11, 014105 (2010).

    Article  Google Scholar 

  6. Ts. V. Rashev, High-Nitrogen Steels Melted under Pressure (BAN, Sofia, 1995) [in Russian].

    Google Scholar 

  7. A. P. Tschiptschin, “Powder Metallurgy Aspects of High Ntrogen Stainless Steels,” in High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, Ed. by K. Mudali and B. Raj (ASM International, 2004).

  8. T. Tsuchiyama, H. Uchida, K. Kataoka, and S. Takaki, “Fabrication of Fine-Grained High Nitrogen Austenitic Steels through Mechanical Alloying Treatment,” ISIJ Intern. 42, 1438–1443 (2002).

    Article  CAS  Google Scholar 

  9. C. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  10. K. H. Lo, C. H. Shek, and J. K. L. Lai, “Recent Developments in Stainless Steels,” Mater. Sci. Eng. R 65, 39–104 (2009).

    Article  Google Scholar 

  11. R. Amini, M. J. Hadianfard, E. Salahinejad, M. Marasi, and T. Sritharan, “Microstructural Phase Evaluation of High-Nitrogen Fe-Cr-Mn Alloy Powders Synthesized by the Mechanical Alloying Process,” J. Mater. Sci. 44, 136–148 (2009).

    Article  CAS  Google Scholar 

  12. M. M. Cisneros, H. F. López, H. Mancha, E. Rincón, D. Vázquez, M. J. Pérez, and S. D. de la Torre, “Processing of Nanostructured High Nitrogen Stainless Steel by Mechanical Alloying,” Metall. Mater. Trans. A 36, 1309–1316 (2005).

    Google Scholar 

  13. T. Haghir, M. H. Abbasi, M. A. Golozar, and M. Panjepour, “Investigation of α to γ Transformation in the Production of a Nanostructured High-Nitrogen Austenitic Stainless Steel Powder via Mechanical Alloying,” Mater. Sci. Eng., A 507, 144–148 (2009).

    Article  Google Scholar 

  14. C. Dawei, Q. Xuanhui, G. Ping, and K. Li, “Preparation of Nearly Spherical Nickel-Free High Nitrogen Austenitic Stainless Steel Powders by Mechanical Alloying,” Powder Metall. Technol. 26, 265–268 (2008).

    Google Scholar 

  15. E. Salahinejad, R. Amini, and M. J. Hadianfard, “Contribution of Nitrogen Concentration to Compressive Elastic Modulus of 18Cr-12Mn-XN Austenitic Stainless Steels Developed by Powder Metallurgy,” Mater. Design 31, 2241–2244 (2010).

    Article  CAS  Google Scholar 

  16. M. Mendez, H. Mancha, G. Mendoza, J. I. Escalante and M. M. Cisneros, “Structure of a Fe-Cr-Mn-Mo-N Alloy Processed by Mechanical Alloying,” Metall. Mater. Trans. A 33, 3273–3278 (2002).

    Article  Google Scholar 

  17. L. Guan, X. Qu, and S. Wang, “Preparation of Stainless Steel Powder Containing Nitrogen by Mechanical Alloying Technique,” J. Univ. Sci. Technol. Beijing 27, 692–694 (2005).

    CAS  Google Scholar 

  18. T. Fukutsuka, T. Anzai, M. Kaneda, Y. Matsuo, Y. Sugie, and K. Fukaura, “Preparation of High Nitrogen Containing Stainless Steels by Mechanical Alloying Method and Their Localized Corrosion Behavior,” J. Soc. Mater. Sci. Jpn. 53, 1175–1179 (2004).

    Article  CAS  Google Scholar 

  19. E. Salahinejad, R. Amini, B. E. Askari, and M. J. Hadianfard, “Microstructural and Hardness Evolution of Mechanically Alloyed Fe-Cr-Mn-N Powders,” J. Alloys Compd. 497, 369–372 (2010).

    Article  CAS  Google Scholar 

  20. E. Salahinejad, R. Amini, and M. J. Hadianfard, “Structural Evolution during Mechanical Alloying of Stainless Steels under Nitrogen (Review),” Powder Technol. 215–216, 247–253 (2012).

    Article  Google Scholar 

  21. E. L. Gyulikhandanov, A. A. Popovich, N. G. Razumov, and A. O. Silin, “Mechanochemical Synthesis of High-Doped Powder Alloys with Super-Equilibrium Content of Nitrogen,” Proceedings of the Int. Sci.-Techn. Conf. “Modern Metal Materials and Technologies” (June 22–24, 2011, St. Petersburg), pp. 81–83.

  22. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, N. L. Pecherkina, and V. P. Pilyugin, “Low-Temperature Deformation Dissolution of Ni3Al(Ti, Si, Zr) Intermetallide Phases in Fe-Ni Alloys with FCC Lattice,” Fiz. Met. Metalloved. 78(6), 49–61 (1994).

    CAS  Google Scholar 

  23. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, V. V. Sagaradze, A. V. Makarov, V. P. Pilyugin, S. I. Novikov, and N. F. Vildanova, “Deformation-Induced Phase Transformation in High-Carbon Steel,” Mater. Sci. Eng. A 346/1-2, 196–207 (2003).

    Google Scholar 

  24. V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-Induced Transformations in Nitride Layers Formed in BCC Iron,” Mater. Sci. Eng. A 452–453, 575–583 (2007).

    Google Scholar 

  25. V. V. Sagaradze, A. V. Litvinov, V. A. Shabashov, N. F. Vil’danova, A. G. Mukoseev, and K. A. Kozlov., “New Method of Mechanical Alloying of ODS Steels Using Iron Oxides,” Phys. Met. Metallogr. 101, 566–576 (2006).

    Article  Google Scholar 

  26. G. A. Dorofeev, E. P. Elsukov, A. V. Zagainov, A. I. Ul’yanov, and N. B. Arsent’eva, “Deformation-Induced Dissolution of Cementite in the Nanocomposite Material α-Fe + 60% Fe3C,” Phys. Met. Metallogr. 98, 393–398 (2004).

    Google Scholar 

  27. V. A. Shabashov, S. V. Borisov, A. V. Litvinov, A. E. Zamatovskii, N. F. Vil’danova, V. I. Voronin, and O. P. Shepatkovskii, “Nanostructure Formation and Phase Transformations in Nitrided Stainless Steel Kh18N8 during Severe Cold Deformation,” Phys. Met. Metallogr. 107, 601–612 (2009).

    Article  Google Scholar 

  28. V. A. Shabashov, S. V. Borisov, A. E. Zamatovskii, A. V. Litvinov, V. V. Sagaradze, and N. F. Vil’danova, “Structural and Phase Transitions in Nitrided Layers of Iron Alloys during Severe Cold Deformation,” Bull. Ross. Acad. Sci., Ser. Phys. 74 363–367 (2010).

    Article  Google Scholar 

  29. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructural Metal Materials: Production, Structure and Properties (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  30. W. T. DeLong, “Ferrite in Austenitic Stainless Steel Weld Metal,” Weld. J. 53(7), 273–286 (1974).

    Google Scholar 

  31. G. Balachandran, M. L. Bhatia, N. B. Ballal, and P. K. Rao, “Some Theoretical Aspects on Designing Nickel Free High Nitrogen Austenitic Stainless Steels,” ISIJ Int. 41, 1018–1027 (2001).

    Article  CAS  Google Scholar 

  32. N. P. D’yakonova, E. V. Shelekhov, T. A. Sviridova, and A. A. Reznikov, “Quantitative X-ray Phase Analysis of Weakly Texturized Objects,” Zavod. Lab. 63(10), 17–24 (1997).

    Google Scholar 

  33. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Yu. A. Babanov, “Regular Algorithm for the Solution of the Inverse Problem in Mössbauer Spectroscopy,” Phys. Stat. Sol. (b) 160, 625–634 (1990).

    Article  CAS  Google Scholar 

  34. B. Pandey, M. A. Rao, H. C. Verma, and S. Bhargava, “Mössbauer Spectroscopic Studies of Fe-20 wt % Cr Ball Milled Alloy,” Hyperfine Interact. 169, 1259–1266 (2006).

    Article  CAS  Google Scholar 

  35. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Belfast, 1958).

    Google Scholar 

  36. E. P. Elsukov, G. A. Dorofeev, A. I. Ul’yanov, A. V. Zagainov, and A. N. Maratkanova, “Mössbauer Spectroscopy and Magnetic Studies of Nanocrystalline Iron Produced by Milling in an Argon Atmosphere,” Phys. Met. Metallogr. 91, 258–265 (2001).

    Google Scholar 

  37. E. P. Yelsukov, G. A. Dorofeev, A. V. Zagainov, N. F. Vildanova, and A. N. Maratkanova, “Initial Stage of Mechanical Alloying in the Fe-C System,” Mat. Sci. Eng. A 369, 16–22 (2004).

    Article  Google Scholar 

  38. E. Salahinejad, R. Amini, M. Ghaffari, and M. J. Hadianfard, “Crystal Interstitial Sites Contribution to Nitrogen Supersaturation in Mechanically Alloyed Fe-Cr-Mn-N Alloys,” J. Alloys Comp. 505, 584–587 (2010).

    Article  CAS  Google Scholar 

  39. O. A. Bannykh, B. M. Blinov, and M. B. Kostina, “Nitrogen as Doping Element in Iron-Based Alloys,” Proceedings of the Workhop-Seminar “Phase and Structural Transformations in Steels” (November 25–30, 2002, Magnitogorsk), p. 157–192.

  40. K. Oda, K. Umezu, and H. Ino, “Interaction and Arrangement of Nitrogen Atoms in FCC γ-Iron,” J. Phys.: Condens. Matter 2, 10147–10158 (1990).

    Article  CAS  Google Scholar 

  41. U. D. Veryatin, V. P. Mashirev, N. G. Ryabtsev, V. I. Tarasov, B. D. Rogozkin, and I. V. Korobov, Thermodynamical Properties of Inorganic Substances (Atomizdat, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Dorofeev, I.V. Sapegina, V.I. Lad’yanov, B.E. Pushkarev, E.A. Pechina, D.V. Prokhorov, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 10, pp. 1014–1025.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeev, G.A., Sapegina, I.V., Lad’yanov, V.I. et al. Mechanical alloying and severe plastic deformation of nanocrystalline high-nitrogen stainless steels. Phys. Metals Metallogr. 113, 963–973 (2012). https://doi.org/10.1134/S0031918X1210002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1210002X

Keywords

Navigation