Skip to main content

Advertisement

Log in

Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 10seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] L.P. Karjalainen, T. Taulavuori, M. Sellman and A. Kyröläinen: Steel Res. Int., 2008, vol. 79, pp. 404-12.

    Google Scholar 

  2. [2] R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3-12.

    Article  Google Scholar 

  3. [3] P. Behjati, A. Kermanpur and A. Najafizadeh: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3254-31.

    Google Scholar 

  4. [4] K. Tomimura, S. Takaki, S. Tanimoto and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 721-27.

    Article  Google Scholar 

  5. [5] K. Tomimura, S. Takaki and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-7.

    Article  Google Scholar 

  6. [6] M. Eskandari, A. Najafizadeh and A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46-50.

    Article  Google Scholar 

  7. [7] M. Eskandari, A. Kermanpur and A. Najafizadeh: Mater. Letters, 2009, vol. 63, pp. 1442-4.

    Article  Google Scholar 

  8. [8] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra and A. Kyrolainen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729-44.

    Article  Google Scholar 

  9. [9] F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati and R. Surkialiabad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7334-9.

    Article  Google Scholar 

  10. [10] S. Rajasekhara, L.P. Karjalainen, A. Kyrӧläinen and P.J. Ferreira: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1986-96.

    Article  Google Scholar 

  11. [11] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, 7779-92.

    Article  Google Scholar 

  12. [12] R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani and L.P. Karjalainen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2162-74.

    Article  Google Scholar 

  13. [13] A. Weidner, A. Müller, A. Weiss and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68-76.

    Article  Google Scholar 

  14. [14] Y. Ma, J.-E. Jin and Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 1311-15.

    Article  Google Scholar 

  15. A. Kisko, A. Hamada, L.P. Karjalainen, and J. Talonen: Microstructure and Mechanical Properties of Reversion Treated High Mn Austenitic 204Cu and 201 Stainless Steels, HMnS 2011, May 15–18, 2011, Grand Hilton Hotel, Seoul, paper B-19.

  16. A. Kisko, L. Rovatti, I. Miettunen, L.P. Karjalainen, and J. Talonen: Microstructure and Anisotropy of Mechanical Properties in Reversion-Treated High-Mn Type 204Cu and 201 Stainless Steels, 7th European Stainless Steel Conference-Science and Market, Sept. 21–23, 2011, Como, Italy, No. 81.

  17. [17] M. Moallemi, A. Najafizadeh, A. Kermanpur and A. Rezaee: Mater. Sci. Eng. A, 2011, vol. 530, pp. 378-81.

    Article  Google Scholar 

  18. [18] A. Rezaee, A. Kermanpur, A. Najafizadeh and M. Moallemi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5025-9.

    Article  Google Scholar 

  19. 19.M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee and H. SamaeiBaghbadorani: Mater. Lett., 2012, vol. 89, pp. 22–4.

    Article  Google Scholar 

  20. [20] J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159-69.

    Article  Google Scholar 

  21. [21] H. Hänninen, J. Romu, R. Ilola, J. Tervo and A. Laitinen: J. Mater. Process. Tech., 2001, vol. 117, pp. 424-30.

    Article  Google Scholar 

  22. [22] M. Sumita, T. Hanawa and S.H. Teoh: Mater. Sci. Eng. C, 2004, vol. 24, pp. 753-60.

    Article  Google Scholar 

  23. 23.G. Saller, K. Spiradek-Hahn, C. Scheu and H. Clemens: Mater. Sci. Eng. A., 2006, vol. 427, pp. 246-54.

    Article  Google Scholar 

  24. [24] Y.-S. Kim, S.M. Nam and S.-J. Kim: J. Mater. Process. Tech., 2007, vol. 187-188, pp. 575-7.

    Article  Google Scholar 

  25. [25] S. Wang, K. Yang, Y. Shan and L. Li: Mater. Sci. Eng. A, 2008, vol. 490, pp. 95-104.

    Article  Google Scholar 

  26. [26] Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv and D. Zhao: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1025-32.

    Article  Google Scholar 

  27. [27] M. Xu, J. Wang, L. Wang, W. Cui and C. Liu: Adv. Mater. Res., 2011, vol. 146-147, pp. 26-33.

    Google Scholar 

  28. [28] B. Hwang, T.-H. Lee, S.-J. Park, C.-S. Oh and S.-J. Kim: Mater. Sci. Eng. A. 2011, vol. 528, pp. 7257-66.

    Article  Google Scholar 

  29. [29] F. Shi, Y. Qi and C. Liu: J. Mater. Sci. Technol. 2011, vol. 27(12), pp. 1125-30.

    Article  Google Scholar 

  30. [30] B. Hwang and S.-J. Kim: Mater. Sci. Eng. A, 2012, vol. 531, pp. 182-85.

    Article  Google Scholar 

  31. [31] J. Kang and F.C. Zhang: Mater. Sci. Eng. A, 2012, vol. 558, pp. 623-31.

    Article  Google Scholar 

  32. Y. Ke, R. Yi Bin, and W. Peng: Sci. China, 2012, vol. 55, pp. 329-40.

  33. [33] A. Di Schino, M. Barteri and J.M. Kenny: J. Mater. Sci., 2003, vol. 38, pp. 4725-33.

    Article  Google Scholar 

  34. [34] H.-B. Li, Z.-H. Jiang, Z.-R. Zhang and Y. Yanh: J. Iron Steel Res. Int., 2009, vol. 16(1), pp. 58-61.

    Article  Google Scholar 

  35. [35] J. Huang, X. Yea, J. Gua, X. Chena and Z. Xu: Mater. Sci. Eng. A, 2012, vol. 532, pp. 190-95.

    Article  Google Scholar 

  36. M.O. Speidel: Proc. Stainl. Steel World 2001 Conf., The Hague, The Netherlands, 2001.

  37. [37] Y. Ikegami and R. Nemoto: ISIJ Int., 1996, vol. 36, pp. 855-61.

    Article  Google Scholar 

  38. [38] T.H. Lee, E. Shin, C.S. Oh and S.J. Kim: Scripta Mater., 2008, vol. 58, pp. 110-13.

    Article  Google Scholar 

  39. [39] P. Behjati, A. Kermanpur, A. Najafizadeh and H. Samaei Baghbadorani: Mater. Sci. Eng. A, 2014, vol. 592, pp. 77-82.

    Article  Google Scholar 

  40. [40] J. Talonen, P. Nenonen, G. Pape and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36, pp. 421-32.

    Article  Google Scholar 

  41. [41] I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki and R. Kaibyshev: Mater. Sci. Eng. A, 2012, vol. 545, pp. 176-86.

    Article  Google Scholar 

  42. [42] H-B. Li, J. Z-H. Jiang, H. Feng, Q-F. Ma and D-P. Zhan: J. Iron Steel Res. Int., 2012, vol. 19(8), pp. 43-51.

    Article  Google Scholar 

  43. [43] D.L. Johannsen, A. Kyrolainen and P.J. Ferreira: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-38.

    Article  Google Scholar 

  44. [44] Q.X. Dai, Z.Z. Yuan, X.M. Luo and X.N. Cheng: Mater. Sci. Eng. A., 2004, vol. 385, pp. 445-8.

    Article  Google Scholar 

  45. [45] J.W. Simmons, B.S. Covino, J.A. Hawk and J.S. Dunning: ISIJ Int., 1996, vol. 36, pp. 846-54.

    Article  Google Scholar 

  46. [46] F. Shi, Y. Qi, M.Z. Xu and C.M. Liu: Adv. Mater. Res., 2010, vol. 146-147, pp. 189-193.

    Google Scholar 

  47. [47] R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani and L.P. Karjalainen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1889-96.

    Article  Google Scholar 

  48. [48] A.F. Padilha, R.L. Plaut and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135-43.

    Article  Google Scholar 

  49. [49] L. Kaufman, E.V. Clougherty and R.J. Weiss: Acta Metall., 1963, vol. 11, 323-35.

    Article  Google Scholar 

  50. [50] M. Tendo, Y. Tadokoro, K. Suetsugu and T. Nakazawa: ISIJ Int., 2001, vol. 41(3), pp. 262-67.

    Article  Google Scholar 

  51. [51] M.O. Speidel, Mat-wiss. a. Werkstofftech., 2006, vol. 37(10), pp. 875-80.

    Article  Google Scholar 

  52. [52] M. Milititsky, N. De Wispelaere, R. Petrov, J.E. Ramos, A. Reguly, H. Hänninen, Mater. Sci. Eng. A, 2008, vol. 498, pp. 289–95.

    Article  Google Scholar 

  53. [53] T. Iwamoto, T. Tsuta and Y. Tomita: Int. J. Mech. Sci., 1998, vol. 40, pp. 173-82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Behjati.

Additional information

Manuscript submitted May 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behjati, P., Kermanpur, A., Najafizadeh, A. et al. Effect of Nitrogen Content on Grain Refinement and Mechanical Properties of a Reversion-Treated Ni-Free 18Cr-12Mn Austenitic Stainless Steel. Metall Mater Trans A 45, 6317–6328 (2014). https://doi.org/10.1007/s11661-014-2595-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2595-4

Keywords

Navigation