Skip to main content
Log in

Studying gold nanoclusters within the Hubbard model

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The approximation of static fluctuations in the Hubbard model is used to calculate the anticommutator Green’s functions, the thermodynamic averages characterizing the possibilities of electron hopping from site to site, the correlation functions which characterize the probability of finding two electrons on one site of a nanosystem, and the energies of the ground state for the closed atomic structures consisting of three, four, and sixteen gold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Zhao, Jinlong Yang, and J. G. Hou, “Theoretical Study of Small Two-Dimensional Gold Clusters,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 085404 (2003).

  2. J. Wang, G. Wang, and J. Zhao, “Density-Functional Study of Aun (n = 2–20) Clusters: Lowest-Energy Structures and Electronic Properties,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 035418 (2002).

  3. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-Protected Cluster Molecules,” Ac. Chem. Res. 33(1), 27–36 (2000).

    Article  CAS  Google Scholar 

  4. M. Dorogi, J. Gomez, R. Osifichin, et al., “Room-Temperature Coulomb Blockade from a Self-Assembled Molecular Nanostructure,” Phys. Rev. B: Condens. Matter 52(12), 9071–9077 (1995).

    CAS  Google Scholar 

  5. R. L. Whetten, M. N. Shafigullin, J. T. Khoury, et al., “Crystal Structures of Molecular Gold Nanocrystal Arrays,” Ac. Chem. Res. 32(5), 397–406 (1999).

    Article  CAS  Google Scholar 

  6. A. Sanchez, S. Abbet, W. D. Schneider, et al., “When Gold is not Noble: Nanoscale Gold Catalysts,” J. Phys. Chem. A 103(48), 9573–9578 (1999).

    Article  CAS  Google Scholar 

  7. V. V. Pokrivnyi and L. I. Ovsyannikova, “Electronic Structure and the Infrared Absorption and Raman Spectra of the Semiconductor Clusters C24, B12N12, Si12C12, Zn12O12, and Ga12N12,” Fiz. Tverd. Tela 49(3), 535–561 (2007) [Phys. Sol. St. 49 (3), 562–570 (2007)].

    Google Scholar 

  8. G. I. Mironov, “Calculation of Green’s Functions for Nanostructures in the Hubbard Model in the Approximation of Static Fluctuations,” Fiz. Met. Metalloved. 102(6), 611–620 (2006) [Phys. Met. Metallogr. 102 (6), 568–577 (2006)].

    CAS  Google Scholar 

  9. L. N. Sidorov and M. A. Yurovskaya, Fullerenes (Ekzamen, Moscow, 2005) [in Russian].

    Google Scholar 

  10. G. I. Mironov, “Nanosystems in the Static-Fluctuation Approximation Hubbard Model,” Fiz. Tverd. Tela 48(7), 1299–1306 (2006) [Phys. Sol. St. 48 (7), 1378–1386 (2006)].

    Google Scholar 

  11. G. I. Mironov, “Investigation of the Structural Elements of a Fullerene within the Static-Fluctuation Approximation of the Hubbard Model,” Fiz. Tverd. Tela 49(3), 527–534 (2007) [Phys. Sol. St. 49 (3), 552–561 (2007)].

    Google Scholar 

  12. H. Hasegawa, “Nonextensive Thermodynamics of the Two-Site Hubbard Model,” Physica A (Amsterdam) 351(1), 273–285 (2005).

    Google Scholar 

  13. J. P. Bucher, D. C. Douglass, and L. A. Bloomfield, “Magnetic Properties of Free Cobalt Clusters,” Phys. Rev. Lett. 66(23), 3052–3055 (1991).

    Article  CAS  Google Scholar 

  14. S. E. Aspel, J. W. Emmert, J. Deng, et al., “Surface-Enhanced Magnetism in Nickel Clusters,” Phys. Rev. Lett. 76(9), 1441–1444 (1996).

    Article  Google Scholar 

  15. J. Hubbard, “Electron Correlations in Narrow Energy,” Proc. R. Soc. London, Ser. A 276(1365), 238–257 (1963).

    Article  Google Scholar 

  16. Yu. A. Izyumov, N. I. Chashchin, and D. S. Alekseev, Theory of Strongly Correlated Systems. Method of Generating Functional (NITs Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2006) [in Russian].

    Google Scholar 

  17. G. I. Mironov, “Antiferromagnetism in the Hubbard Model,” Fiz. Tverd. Tela 39(9), 1594–1599 (1997) [Phys. Sol. St. 39 (9), 1420–1424 (1997)].

    CAS  Google Scholar 

  18. G. I. Mironov, “B-B′-U Hubbard Model in the Approximation of Static Fluctuations,” Fiz. Tverd. Tela 41(6), 951–956 (1999) [Phys. Sol. St. 41 (6), 864–869 (1999)].

    Google Scholar 

  19. G. I. Mironov, “The Ground-State Energy of the B-B′-U Hubbard Model in the Static-Fluctuation Approximation,” Fiz. Tverd. Tela 44(2), 209–212 (2002) [Phys. Sol. St. 44 (2), 216–220 (2002)].

    Google Scholar 

  20. V. J. Emery, “Theory of High-T c Superconductivity in Oxides,” Phys. Rev. Lett. 58(26), 2794–2797 (1987).

    Article  CAS  Google Scholar 

  21. E. H. Lieb and F. Y. Wu, “Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension,” Phys. Rev. Lett. 20(25), 1445–1448 (1968).

    Article  Google Scholar 

  22. G. I. Mironov, in Structure and Dynamics of Molecular Systems (Kazan, 2003), No. 10, Part 1, pp. 323–326 [in Russian].

  23. G. I. Mironov, in Topical Problems of Physics of Condensed Matter (Kazan, 2004), pp. 235–255 [in Russian].

  24. D. Alamanova, Yi. Dong, H. Rehman, et al., “Structural and Electronic Properties of Gold Clusters,” Comp. Lett. (CoLe), 1(1), 1–12 (2005).

    Google Scholar 

  25. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum, New York, 1967; 2nd ed.; Nauka, Moscow, 1975).

    Google Scholar 

  26. G. I. Mironov, “Study of One-Particle Hubbard Model in Bipartite Hubbard Model in Static-Fluctuation Approximation,” Fiz. Nizk. Temp. 31(12), 1388–1394 (2005).

    Google Scholar 

  27. L. M. Falicov and R. H. Victora, “Exact Solution of the Hubbard Model for a Four-Center Tetrahedral Cluster,” Phys. Rev. B: Condens. Matter 30(4), 1695–1699 (1994).

    Google Scholar 

  28. G. J. Hutchings, “New Directions in Gold Catalysis,” Gold Bull. 37(1–2), 3–11 (2004).

    CAS  Google Scholar 

  29. M. Haruta, “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” Gold Bull. 37(1–2), 27–36 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.I. Mironov, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 105, No. 4, pp. 355–365.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, G.I. Studying gold nanoclusters within the Hubbard model. Phys. Metals Metallogr. 105, 327–337 (2008). https://doi.org/10.1134/S0031918X08040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X08040030

PACS numbers

Navigation