Skip to main content
Log in

Simulation of the Two-Photon Young’s Experiment within the Framework of the Photon Quantum Mechanics and in the Quasi-Classical Approach in the Electric-Dipole Approximation

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The two-photon interference appearing in a mental experiment similar to the Young’s experiment as a result of simultaneious emission of two photons by (two) independent point sources under the assumption that their radiation is described in the electric-dipole approximation in the classical electrodynamics is simulated within the framework of the photon quantum mechanics by using a six-component photon wave function in the coordinate representation and, for comparison, in the proposed “quasi-classical” approach by using the one-component photon wave function. The relevance of introduction of the photon wave function is emphasized in comparison to the concept of the photon being a “train” of real electromagnetic waves. The task of setting up new experiments that could initiate the analysis of the physical nature of quantum phenomena that occur in the physical vacuum and are formally described by the wave function in the quantum mechanics or by transition amplitudes in the quantum electrodynamics is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1399, 022019 (2019). https://doi.org/10.1088/1742-6596/1399/2/022019

  2. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1679, 022051 (2020). https://doi.org/10.1088/1742-6596/1679/2/022051

  3. L. Landau and R. Peierls, Z. Phys. 62, 188 (1930). https://doi.org/10.1007/bf01339793

    Article  ADS  Google Scholar 

  4. H. A. Kramers, Quantum Mechanics (North-Holland, Amsterdam, 1958).

    Google Scholar 

  5. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949). https://doi.org/10.1103/revmodphys.21.400

    Article  ADS  Google Scholar 

  6. D. Bohm, Quantum Theory (Constable, London, 1954).

    Google Scholar 

  7. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Pergamon, New York, 1982).

    Google Scholar 

  8. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/revmodphys.74.145

    Article  ADS  Google Scholar 

  9. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 9, 1502 (2003).

    Article  ADS  Google Scholar 

  10. I. Bialynicki-Birula, in Progress in Optics, Ed. by E. Wolf (Elsevier, Amsterdam, 1996), Vol. 36, pp. 248–294. https://doi.org/10.1016/S0079-6638(08)70316-0

    Book  Google Scholar 

  11. I. Bialynicki-Birula, in Coherence and Quantum Optics VII, Ed. by J. H. Eberly, L. Mandel, and E. Wolf (Plenum, New York, 1996), pp. 313–323.

    Google Scholar 

  12. M. Hawton, Phys. Rev. A 59, 3223 (1999). https://doi.org/10.1103/PhysRevA.59.3223

    Article  ADS  Google Scholar 

  13. D. H. Kobe, Found. Phys. 29, 1203 (1999). https://doi.org/10.1023/A:1018855630724

    Article  MathSciNet  Google Scholar 

  14. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, in Advances in Atomic, Molecular, and Optical Physics, Ed. by G. Rempe and M. O. Scully (Elsevier, 2005), Vol. 53, pp. 253–289.

    Google Scholar 

  15. J. Cugnon, Open J. Microphysics 1 (3), 41 (2011). https://doi.org/10.4236/ojm.2011.13008

    Article  Google Scholar 

  16. V. Debierre, in PhD Thesis (Ecole Centrale Marseille, Marseille, 2015). https://theses.hal.science/tel-01406401.

  17. P. Saari, in Quantum Optics and Laser Experiments, Ed. by S. Lyagushyn (IntechOpen, Rijeka, Croatia, 2012), pp. 49–66. https://doi.org/10.5772/29895

    Book  Google Scholar 

  18. A. P. Davydov, Vestn. Magnitogorsk. Gos. Univ., Estestv. Nauki 5, 235 (2004).

    Google Scholar 

  19. A. P. Davydov, in Actual Problems of Modern Science, Technology and Education: Proc. 73rd Int. Sci. and Tech. Conf. (Magnitogorsk. Gos. Tekh. Univ. im. Nosova, Magnitogosk, 2015), Vol. 3, pp. 133–137.

  20. A. P. Davydov, Elektromagnitnye Volny Elektronnye Sist. 20 (5), 43 (2015).

    Google Scholar 

  21. A. P. Davydov and T. P. Zlydneva, J. Phys.: Conf. Ser. 1661, 012028 (2020). https://doi.org/10.1088/1742-6596/1661/1/012028

  22. R. Mignani, E. Recami, and M. Baido, Left. Nuovo Cimento 11, 568 (1974). https://doi.org/10.1007/BF02812391

    Article  Google Scholar 

  23. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011). https://doi.org/10.1038/nature10120

    Article  Google Scholar 

  24. R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, Nat. Photonics 10, 576 (2016). https://doi.org/10.1038/nphoton.2016.129

    Article  ADS  Google Scholar 

  25. G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen, Phys. Rev. Lett. 117, 120401 (2016). https://doi.org/10.1103/PhysRevLett.117.120401

  26. W.-W. Pan, X.-Ye. Xu, Ya. Kedem, Q.-Q. Wang, Z. Chen, M. Jan, K. Sun, J.-Sh. Xu, Yo.-J. Han, Ch.‑F. Li, and G.-C. Guo, Phys. Rev. Lett. 123, 150402 (2019). https://doi.org/10.1103/PhysRevLett.123.150402

  27. A. C. Martinez-Becerril, G. Bussières, D. Curic, L. Gi-ner, R. A. Abrahao, and J. S. Lundeen, Quantum 5, 599 (2021). https://doi.org/10.22331/q-2021-12-06-599

    Article  Google Scholar 

  28. A. P. Davydov and T. P. Zlydneva, in 14th Int. Sci.-Tech. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE) (Novosibirsk. Gos. Tekh. Univ., Novosibirsk, 2018), Vol. 1, Part 4, pp. 58–69. https://doi.org/10.1109/APEIE.2018.8545314

  29. A. P. Davydov and T. P. Zlydneva, in 2021 15th Int. Sci.-Tech. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, 2021 (IEEE, 2021), pp. 682–687. https://doi.org/10.1109/APEIE52976.2021.9647611

  30. A. P. Davydov and T. P. Zlydneva, Inzh. Fiz., No. 11, 9 (2021). https://doi.org/10.25791/infizik.11.2021.1234

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Davydov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.P., Zlydneva, T.P. Simulation of the Two-Photon Young’s Experiment within the Framework of the Photon Quantum Mechanics and in the Quasi-Classical Approach in the Electric-Dipole Approximation. Opt. Spectrosc. (2024). https://doi.org/10.1134/S0030400X24700152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0030400X24700152

Keywords:

Navigation